Comparative Study on the Efficiency of Using LB-FCN and Contrastive Learning for Detecting Bone Tumor in Bone Scans

计算机科学
作者
Hashem B. Al-Saqqa,Ashraf Y. A. Maghari,Shadi Abudalfa
出处
期刊:Technical and vocational education and training 卷期号:: 211-219
标识
DOI:10.1007/978-981-99-7798-7_18
摘要

Nowadays, healthcare improvement has a big impact on the business sector through the reduction of healthcare costs and the creation of opportunities for companies to develop new technology for the medical equipment analysis of scintigraphy images. This technological improvement currently has a huge impact on biomedical science, whereas a lot of concern has shifted to detecting bone metastasis disease. This disease is hard to detect, while the most popular method for diagnosing is based on bone scintigraphy. This technology is based on scanning the whole body; however, the hot spots that are presented in the scanned image may mislead the results. Therefore, the accuracy of this methodology is not enough and makes the diagnosis of bone metastasis a real challenge. Thus, the researchers have been encouraged to increase the accuracy of diagnosing this disease by using machine learning and deep learning techniques. In this chapter, we present a comparative study for evaluating the performance of employing two deep learning techniques in this research direction. We selected the long-term recurrent convolutional network (LB-FCN, which stands for light-weighted bilinear fully convolutional network) and contrastive learning since they are not sufficiently evaluated in previous related works. The results have been reported by using six evaluation metrics: precision, recall, F1-score, sensitivity, specificity, and accuracy. The results show a demonstration of contrastive learning over LB-FCN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
联润翔发布了新的文献求助10
1秒前
Lucas应助cosine采纳,获得10
3秒前
汤一德完成签到,获得积分10
3秒前
6秒前
8秒前
wertyt完成签到,获得积分10
8秒前
10秒前
彭彭发布了新的文献求助10
13秒前
xiaoran发布了新的文献求助10
14秒前
wsy完成签到,获得积分10
16秒前
16秒前
开心柠檬完成签到 ,获得积分10
17秒前
gxsmessi发布了新的文献求助10
19秒前
wsy发布了新的文献求助10
19秒前
土豆发布了新的文献求助10
19秒前
20秒前
健忘半邪完成签到 ,获得积分10
21秒前
22秒前
chen关注了科研通微信公众号
23秒前
zhouzhou完成签到,获得积分10
24秒前
洛依1213发布了新的文献求助10
27秒前
李涛发布了新的文献求助30
27秒前
原味鸡完成签到,获得积分10
27秒前
28秒前
xxy991007发布了新的文献求助10
29秒前
30秒前
32秒前
32秒前
谷鸿飞发布了新的文献求助10
33秒前
土豆完成签到,获得积分20
33秒前
CipherSage应助Vespa采纳,获得10
34秒前
slokni发布了新的文献求助30
34秒前
35秒前
心流完成签到 ,获得积分10
37秒前
maonaiqian发布了新的文献求助10
38秒前
38秒前
111完成签到 ,获得积分10
40秒前
共享精神应助木cheng采纳,获得10
43秒前
44秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153361
求助须知:如何正确求助?哪些是违规求助? 2804608
关于积分的说明 7860306
捐赠科研通 2462547
什么是DOI,文献DOI怎么找? 1310806
科研通“疑难数据库(出版商)”最低求助积分说明 629396
版权声明 601794