亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comparative Study on the Efficiency of Using LB-FCN and Contrastive Learning for Detecting Bone Tumor in Bone Scans

计算机科学
作者
Hashem B. Al-Saqqa,Ashraf Y. A. Maghari,Shadi Abudalfa
出处
期刊:Technical and vocational education and training 卷期号:: 211-219 被引量:1
标识
DOI:10.1007/978-981-99-7798-7_18
摘要

Nowadays, healthcare improvement has a big impact on the business sector through the reduction of healthcare costs and the creation of opportunities for companies to develop new technology for the medical equipment analysis of scintigraphy images. This technological improvement currently has a huge impact on biomedical science, whereas a lot of concern has shifted to detecting bone metastasis disease. This disease is hard to detect, while the most popular method for diagnosing is based on bone scintigraphy. This technology is based on scanning the whole body; however, the hot spots that are presented in the scanned image may mislead the results. Therefore, the accuracy of this methodology is not enough and makes the diagnosis of bone metastasis a real challenge. Thus, the researchers have been encouraged to increase the accuracy of diagnosing this disease by using machine learning and deep learning techniques. In this chapter, we present a comparative study for evaluating the performance of employing two deep learning techniques in this research direction. We selected the long-term recurrent convolutional network (LB-FCN, which stands for light-weighted bilinear fully convolutional network) and contrastive learning since they are not sufficiently evaluated in previous related works. The results have been reported by using six evaluation metrics: precision, recall, F1-score, sensitivity, specificity, and accuracy. The results show a demonstration of contrastive learning over LB-FCN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
13秒前
duanjun123完成签到,获得积分10
31秒前
Demi_Ming完成签到,获得积分10
31秒前
duanjun123发布了新的文献求助20
35秒前
量子星尘发布了新的文献求助10
58秒前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
李健应助科研通管家采纳,获得10
1分钟前
2分钟前
冷艳的灭龙完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
科研通AI5应助科研通管家采纳,获得30
3分钟前
赘婿应助科研通管家采纳,获得10
3分钟前
在水一方应助科研通管家采纳,获得10
3分钟前
完美世界应助科研通管家采纳,获得10
3分钟前
3分钟前
星际舟完成签到,获得积分10
3分钟前
比比谁的速度快给小幻的求助进行了留言
4分钟前
4分钟前
香蕉念薇发布了新的文献求助10
4分钟前
swayqur发布了新的文献求助30
4分钟前
所所应助卡卡采纳,获得10
4分钟前
wanjingwan完成签到 ,获得积分10
4分钟前
swayqur完成签到,获得积分10
4分钟前
学术小垃圾应助香蕉念薇采纳,获得10
4分钟前
4分钟前
fkdbdy发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
科研通AI2S应助等待夏旋采纳,获得10
5分钟前
Hello应助跳跃采纳,获得10
5分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
小二郎应助科研通管家采纳,获得10
5分钟前
5分钟前
传奇3应助科研通管家采纳,获得10
5分钟前
小蘑菇应助科研通管家采纳,获得10
5分钟前
5分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015118
求助须知:如何正确求助?哪些是违规求助? 3555096
关于积分的说明 11317842
捐赠科研通 3288577
什么是DOI,文献DOI怎么找? 1812266
邀请新用户注册赠送积分活动 887869
科研通“疑难数据库(出版商)”最低求助积分说明 811983