Comparative Study on the Efficiency of Using LB-FCN and Contrastive Learning for Detecting Bone Tumor in Bone Scans

计算机科学
作者
Hashem B. Al-Saqqa,Ashraf Y. A. Maghari,Shadi Abudalfa
出处
期刊:Technical and vocational education and training 卷期号:: 211-219 被引量:1
标识
DOI:10.1007/978-981-99-7798-7_18
摘要

Nowadays, healthcare improvement has a big impact on the business sector through the reduction of healthcare costs and the creation of opportunities for companies to develop new technology for the medical equipment analysis of scintigraphy images. This technological improvement currently has a huge impact on biomedical science, whereas a lot of concern has shifted to detecting bone metastasis disease. This disease is hard to detect, while the most popular method for diagnosing is based on bone scintigraphy. This technology is based on scanning the whole body; however, the hot spots that are presented in the scanned image may mislead the results. Therefore, the accuracy of this methodology is not enough and makes the diagnosis of bone metastasis a real challenge. Thus, the researchers have been encouraged to increase the accuracy of diagnosing this disease by using machine learning and deep learning techniques. In this chapter, we present a comparative study for evaluating the performance of employing two deep learning techniques in this research direction. We selected the long-term recurrent convolutional network (LB-FCN, which stands for light-weighted bilinear fully convolutional network) and contrastive learning since they are not sufficiently evaluated in previous related works. The results have been reported by using six evaluation metrics: precision, recall, F1-score, sensitivity, specificity, and accuracy. The results show a demonstration of contrastive learning over LB-FCN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liyuhua发布了新的文献求助10
刚刚
慕子默发布了新的文献求助10
1秒前
科研小能手完成签到,获得积分10
1秒前
2秒前
3秒前
3秒前
燮大帅完成签到,获得积分10
3秒前
情怀应助AA采纳,获得10
4秒前
泰裤辣完成签到,获得积分10
5秒前
搜集达人应助孟孟采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
tomatototo应助白衣采纳,获得30
7秒前
青柠发布了新的文献求助10
8秒前
Sure发布了新的文献求助10
8秒前
zx完成签到,获得积分20
9秒前
9秒前
xiaoxie完成签到 ,获得积分10
9秒前
共享精神应助肖菜菜采纳,获得10
9秒前
9秒前
小不点完成签到,获得积分10
9秒前
10秒前
天真的万声完成签到,获得积分10
10秒前
李艾关注了科研通微信公众号
10秒前
来杯赤野完成签到,获得积分10
11秒前
SciGPT应助小张z采纳,获得10
11秒前
hhhh发布了新的文献求助10
12秒前
科研通AI2S应助哈哈采纳,获得10
12秒前
慕子默完成签到,获得积分10
12秒前
闪闪的硬币完成签到 ,获得积分10
12秒前
13秒前
14秒前
Ariels完成签到,获得积分10
14秒前
Owen应助Aurora采纳,获得10
14秒前
标致的如雪完成签到 ,获得积分10
14秒前
YaoHui发布了新的文献求助10
15秒前
16秒前
Naz完成签到,获得积分10
16秒前
16秒前
nicoco完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3663305
求助须知:如何正确求助?哪些是违规求助? 3223962
关于积分的说明 9754101
捐赠科研通 2933829
什么是DOI,文献DOI怎么找? 1606430
邀请新用户注册赠送积分活动 758489
科研通“疑难数据库(出版商)”最低求助积分说明 734809