孜然芹属
过氧化氢酶
转录组
代谢组学
超氧化物歧化酶
化学
脯氨酸
丙二醛
生物化学
代谢物
过氧化物酶
氧化应激
生物
酶
食品科学
基因表达
植物
基因
氨基酸
色谱法
精油
作者
Xinlong Yang,Yinguang Chen,Weiguo Liu,Tingwen Huang,Yang Yang,Yuqing Mao,Yao Meng
标识
DOI:10.1016/j.scitotenv.2024.171497
摘要
Lead (Pb) can disrupt plant gene expression, modify metabolite contents, and influence the growth of plants. Cuminum cyminum L. is highly adaptable to adversity, but molecular mechanism by which it responds to Pb stress is unknown. For this study, transcriptomic and metabolomic sequencing was performed on root tissues of C. cyminum under Pb stress. Our results showed that high Pb stress increased the activity of peroxidase (POD), the contents of malondialdehyde (MDA) and proline by 80.03 %, 174.46 % and 71.24 %, respectively. Meanwhile, Pb stress decreased the activities of superoxide dismutase (SOD) and catalase (CAT) as well as contents of soluble sugars and GSH, which thus affected the growth of C. cyminum. In addition, Pb stress influenced the accumulation and transport of Pb in C. cyminum. Metabolomic results showed that Pb stress affected eight metabolic pathways involving 108 differentially expressed metabolites, primarily amino acids, organic acids, and carbohydrates. The differentially expressed genes identified through transcriptome analysis were mainly involved the oxidation reductase activity, transmembrane transport, phytohormone signaling, and MAPK signaling pathway. The results of this study will help to understand the molecular mechanisms of C. cyminum response to Pb stress, and provide a basis for screening seeds with strong resistance to heavy metals.
科研通智能强力驱动
Strongly Powered by AbleSci AI