Healthcare facilities management: A novel data-driven model for predictive maintenance of computed tomography equipment

计算机科学 直方图 数据挖掘 预测建模 预测性维护 人工智能 特征(语言学) 机器学习 模式识别(心理学) 可靠性工程 工程类 图像(数学) 语言学 哲学
作者
Haopeng Zhou,Qilin Liu,Haowen Liu,Chen Zhu,Zhenlin Li,Yixuan Zhuo,Kang Li,Changxi Wang,Jin Huang
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:149: 102807-102807 被引量:2
标识
DOI:10.1016/j.artmed.2024.102807
摘要

The breakdown of healthcare facilities is a huge challenge for hospitals. Medical images obtained by Computed Tomography (CT) provide information about the patients' physical conditions and play a critical role in diagnosis of disease. To deliver high-quality medical images on time, it is essential to minimize the occurrence frequencies of anomalies and failures of the equipment. We extracted the real-time CT equipment status time series data such as oil temperature, of three equipment, between May 19, 2020, and May 19, 2021. Tube arcing is treated as the classification label. We propose a dictionary-based data-driven model SAX-HCBOP, where the two methods, Histogram-based Information Gain Binning (HIGB) and Coefficient improved Bag of Pattern (CoBOP), are implemented to transform the data into the bag-of-words paradigm. We compare our model to the existing predictive maintenance models based on statistical and time series classification algorithms. The results show that the Accuracy, Recall, Precision and F1-score of the proposed model achieve 0.904, 0.747, 0.417, 0.535, respectively. The oil temperature is identified as the most important feature. The proposed model is superior to other models in predicting CT equipment anomalies. In addition, experiments on the public dataset also demonstrate the effectiveness of the proposed model. The two proposed methods can improve the performance of the dictionary-based time series classification methods in predictive maintenance. In addition, based on the proposed real-time anomaly prediction system, the model assists hospitals in making accurate healthcare facilities maintenance decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
逃亡的小狗完成签到,获得积分10
1秒前
Ava应助听话的破茧采纳,获得10
4秒前
领导范儿应助WQY采纳,获得10
4秒前
sjc完成签到,获得积分10
5秒前
Orange应助小小小柒采纳,获得10
6秒前
CipherSage应助阿尔吉侬采纳,获得10
8秒前
sjc发布了新的文献求助10
11秒前
九月完成签到,获得积分10
14秒前
14秒前
16秒前
17秒前
ChandlerZB完成签到,获得积分10
18秒前
李健的小迷弟应助Mark采纳,获得10
19秒前
WQY发布了新的文献求助10
19秒前
21秒前
小小小柒发布了新的文献求助10
22秒前
23秒前
陈滚滚发布了新的文献求助10
23秒前
菠萝菠萝哒应助龍Ryu采纳,获得10
23秒前
庸尘发布了新的文献求助10
26秒前
渔舟唱晚应助咖啡不加冰采纳,获得10
26秒前
找回自己发布了新的文献求助10
28秒前
发文章发布了新的文献求助10
29秒前
彭于晏应助sjc采纳,获得10
29秒前
30秒前
WQY完成签到,获得积分10
33秒前
34秒前
36秒前
FashionBoy应助发文章采纳,获得10
38秒前
兰东平完成签到,获得积分20
38秒前
39秒前
张文文发布了新的文献求助10
40秒前
40秒前
不知道发布了新的文献求助10
43秒前
Lotus发布了新的文献求助10
43秒前
44秒前
45秒前
orixero应助兰东平采纳,获得10
45秒前
49秒前
Mark发布了新的文献求助10
50秒前
高分求助中
Востребованный временем 2500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
The Restraining Hand: Captivity for Christ in China 500
Encyclopedia of Mental Health Reference Work 400
Mercury and Silver Mining in the Colonial Atlantic 300
Studi sul Vicino Oriente antico dedicati alla memoria di Luigi Cagni vol.1 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3374491
求助须知:如何正确求助?哪些是违规求助? 2991300
关于积分的说明 8745025
捐赠科研通 2675160
什么是DOI,文献DOI怎么找? 1465484
科研通“疑难数据库(出版商)”最低求助积分说明 677850
邀请新用户注册赠送积分活动 669473