Image Aesthetics Assessment With Emotion-Aware Multibranch Network

背景(考古学) 计算机科学 感知 代表(政治) 网(多面体) 人工智能 可视化 图像(数学) 特征(语言学) 编码(集合论) 数学 心理学 古生物学 语言学 哲学 几何学 集合(抽象数据类型) 神经科学 政治 政治学 法学 生物 程序设计语言
作者
Hangwei Chen,Feng Shao,Baoyang Mu,Qiuping Jiang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-15 被引量:2
标识
DOI:10.1109/tim.2024.3365174
摘要

The aesthetic and appreciation of an image is the innate human perceptual ability. Emotion, as one of the most basic human perceptions, has been found to have a close relationship with aesthetics. However, explicitly incorporating the learned emotion cues into the image aesthetics assessment (IAA) model remains challenging. Additionally, humans consider both fine-grained details and holistic context information in aesthetic assessments. Therefore, the utilization of emotional information to enhance and modulate the representation of aesthetic features in context and detail is crucial for IAA. With this motivation, we propose a new IAA method named emotion-aware multi-branch network (EAMB-Net). Specifically, we first design two branches to extract aesthetic features related to detail and context. Then, an emotion branch is proposed to reveal the important emotion regions by generating the emotion-aware map (EAM). Finally, the EAM is further employed to infuse emotional knowledge into the aesthetic features and enhance the feature representation, producing the final aesthetic prediction. Experimental results validate that the proposed EAMB-Net can achieve superior performance in score regression, binary classification, and score distribution tasks, obtaining the classification accuracies of 88.87% and 82.12% on the PARA and IAE datasets, respectively, using ResNet50 as the backbone. Furthermore, the Emotion-Aware Map (EAM) visualization highlights the critical regions of an image, making EAMB-Net more interpretable than its competitors. Our code will be released at https://github.com/Hangwei-Chen/EAMB-Net.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
苟小兵完成签到,获得积分10
2秒前
彭于晏应助青青采纳,获得10
3秒前
4秒前
5秒前
Pt发布了新的文献求助10
5秒前
李健应助jingjing-8995采纳,获得10
6秒前
6秒前
7秒前
8秒前
小白痴发布了新的文献求助10
8秒前
8秒前
大小罐子发布了新的文献求助10
10秒前
Jasper应助爱学习的婷采纳,获得10
10秒前
liu完成签到,获得积分10
11秒前
Owen应助毕加索没钥匙采纳,获得10
12秒前
964230130发布了新的文献求助10
13秒前
13秒前
13秒前
查丽发布了新的文献求助10
14秒前
14秒前
考拉关注了科研通微信公众号
14秒前
kiki发布了新的文献求助10
14秒前
14秒前
15秒前
16秒前
好想水蜜桃完成签到,获得积分10
16秒前
17秒前
Pt完成签到,获得积分10
17秒前
大王完成签到 ,获得积分10
17秒前
su完成签到,获得积分10
17秒前
李健应助跨材料采纳,获得10
17秒前
micpeach发布了新的文献求助10
19秒前
科研通AI2S应助BUG采纳,获得10
19秒前
20秒前
利好发布了新的文献求助10
20秒前
研友_LBKOgn发布了新的文献求助10
21秒前
一笑倾城发布了新的文献求助10
22秒前
研友_LOoomL发布了新的文献求助10
23秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3228477
求助须知:如何正确求助?哪些是违规求助? 2876197
关于积分的说明 8194322
捐赠科研通 2543356
什么是DOI,文献DOI怎么找? 1373691
科研通“疑难数据库(出版商)”最低求助积分说明 646816
邀请新用户注册赠送积分活动 621402