Image Aesthetics Assessment With Emotion-Aware Multibranch Network

背景(考古学) 计算机科学 感知 代表(政治) 网(多面体) 人工智能 可视化 图像(数学) 特征(语言学) 编码(集合论) 数学 心理学 古生物学 语言学 哲学 几何学 集合(抽象数据类型) 神经科学 政治 政治学 法学 生物 程序设计语言
作者
Hangwei Chen,Feng Shao,Baoyang Mu,Qiuping Jiang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-15 被引量:5
标识
DOI:10.1109/tim.2024.3365174
摘要

The aesthetic and appreciation of an image is the innate human perceptual ability. Emotion, as one of the most basic human perceptions, has been found to have a close relationship with aesthetics. However, explicitly incorporating the learned emotion cues into the image aesthetics assessment (IAA) model remains challenging. Additionally, humans consider both fine-grained details and holistic context information in aesthetic assessments. Therefore, the utilization of emotional information to enhance and modulate the representation of aesthetic features in context and detail is crucial for IAA. With this motivation, we propose a new IAA method named emotion-aware multi-branch network (EAMB-Net). Specifically, we first design two branches to extract aesthetic features related to detail and context. Then, an emotion branch is proposed to reveal the important emotion regions by generating the emotion-aware map (EAM). Finally, the EAM is further employed to infuse emotional knowledge into the aesthetic features and enhance the feature representation, producing the final aesthetic prediction. Experimental results validate that the proposed EAMB-Net can achieve superior performance in score regression, binary classification, and score distribution tasks, obtaining the classification accuracies of 88.87% and 82.12% on the PARA and IAE datasets, respectively, using ResNet50 as the backbone. Furthermore, the Emotion-Aware Map (EAM) visualization highlights the critical regions of an image, making EAMB-Net more interpretable than its competitors. Our code will be released at https://github.com/Hangwei-Chen/EAMB-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhou_AGCT发布了新的文献求助10
刚刚
我是张铁柱·完成签到,获得积分10
1秒前
坚定的可愁完成签到,获得积分10
1秒前
1秒前
贾克斯发布了新的文献求助10
3秒前
SDM发布了新的文献求助20
3秒前
3秒前
XFan完成签到,获得积分10
3秒前
Jayson完成签到,获得积分10
4秒前
4秒前
hxm发布了新的文献求助10
4秒前
5秒前
QLG完成签到,获得积分10
5秒前
江屿发布了新的文献求助10
6秒前
hero完成签到,获得积分10
7秒前
jjoy完成签到,获得积分10
8秒前
木木发布了新的文献求助10
8秒前
英姑应助微凉采纳,获得10
9秒前
QLG发布了新的文献求助10
9秒前
斯文败类应助贾克斯采纳,获得10
9秒前
Ashley发布了新的文献求助10
9秒前
9秒前
11秒前
hxm完成签到,获得积分10
11秒前
11秒前
千跃应助激情的纲采纳,获得10
12秒前
阿姜姜姜姜应助Kevin采纳,获得10
13秒前
精明蚂蚁完成签到,获得积分10
13秒前
13秒前
壮观以松完成签到,获得积分10
14秒前
爆米花应助Ashley采纳,获得30
15秒前
雪生在无人荒野完成签到,获得积分10
16秒前
宋映梦发布了新的文献求助10
16秒前
dawnstar发布了新的文献求助30
17秒前
SYLH应助Gumiano采纳,获得10
17秒前
曾经听云发布了新的文献求助10
18秒前
雷小牛完成签到 ,获得积分10
18秒前
astras发布了新的文献求助10
19秒前
20秒前
羊羊完成签到 ,获得积分10
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952796
求助须知:如何正确求助?哪些是违规求助? 3498228
关于积分的说明 11091005
捐赠科研通 3228793
什么是DOI,文献DOI怎么找? 1785139
邀请新用户注册赠送积分活动 869145
科研通“疑难数据库(出版商)”最低求助积分说明 801350