Elegant robustification of sparse partial least squares by robustness-inducing transformations

稳健性 数学 稳健性(进化) 偏最小二乘回归 应用数学 数学优化 统计 生物化学 化学 基因 离群值
作者
Sven Serneels,Luca Insolia,Tim Verdonck
出处
期刊:Statistics [Taylor & Francis]
卷期号:: 1-21
标识
DOI:10.1080/02331888.2024.2313507
摘要

Robust alternatives exist for many statistical estimators. State-of-the-art robust methods are fine-tuned to optimize the balance between statistical efficiency and robustness. The resulting estimators may, however, require computationally intensive iterative procedures. Recently, several robustness-inducing transformations (RIT) have been introduced. By merely applying such transformations as a preprocessing step, a computationally very fast robust estimator can be constructed. Building upon the example of sparse partial least squares (SPLS), this work shows that such an approach can lead to performance close to the computationally more intensive methods. This article proves that the resulting estimator is robust, by showing that it has a bounded influence function. To establish the latter, this article is first to formulate SPLS at the population level and therefrom, to derive (classical) SPLS's influence function. It also shows that the breakdown point of the resulting regression coefficients can approach 50% when properly tuned. Extensive Monte Carlo simulations highlight the advantages of the new method, which performs comparably and at times even better than existing robust methods based on M-estimation, yet at a significantly lower computational burden. Two application studies related to the cancer cell panel of the National Cancer Institute and the chemical analysis of archaeological glass vessels further support the applicability of the proposed robustness-inducing transformations, combined with SPLS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夸父完成签到,获得积分10
刚刚
3秒前
深情安青应助怎么忘了采纳,获得30
3秒前
4秒前
阿猩a完成签到 ,获得积分10
4秒前
4秒前
望除完成签到,获得积分10
5秒前
轻松凡完成签到,获得积分10
6秒前
望北楼主发布了新的文献求助10
6秒前
ardejiang发布了新的文献求助10
6秒前
prince8891发布了新的文献求助10
7秒前
youyuanDeng完成签到,获得积分10
7秒前
易安发布了新的文献求助10
8秒前
yu发布了新的文献求助10
9秒前
10秒前
bkagyin应助妮儿采纳,获得10
12秒前
虚影完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
让人完成签到,获得积分20
12秒前
梓榆发布了新的文献求助20
12秒前
13秒前
13秒前
Zyk完成签到,获得积分10
14秒前
科研通AI2S应助咯咚采纳,获得10
14秒前
15秒前
请和我吃饭完成签到,获得积分10
15秒前
孤独静枫完成签到 ,获得积分10
16秒前
Mitochondrion完成签到,获得积分10
17秒前
檀a完成签到,获得积分10
17秒前
Joye发布了新的文献求助10
17秒前
17秒前
19秒前
19秒前
19秒前
1111完成签到,获得积分10
21秒前
二手的科学家完成签到,获得积分10
22秒前
FanFan完成签到,获得积分10
22秒前
泪雨煊发布了新的文献求助10
22秒前
23秒前
汉堡包应助科研通管家采纳,获得10
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951079
求助须知:如何正确求助?哪些是违规求助? 3496471
关于积分的说明 11082339
捐赠科研通 3226915
什么是DOI,文献DOI怎么找? 1784061
邀请新用户注册赠送积分活动 868165
科研通“疑难数据库(出版商)”最低求助积分说明 801052