已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Elegant robustification of sparse partial least squares by robustness-inducing transformations

稳健性 数学 稳健性(进化) 偏最小二乘回归 应用数学 数学优化 统计 生物化学 化学 基因 离群值
作者
Sven Serneels,Luca Insolia,Tim Verdonck
出处
期刊:Statistics [Informa]
卷期号:: 1-21
标识
DOI:10.1080/02331888.2024.2313507
摘要

Robust alternatives exist for many statistical estimators. State-of-the-art robust methods are fine-tuned to optimize the balance between statistical efficiency and robustness. The resulting estimators may, however, require computationally intensive iterative procedures. Recently, several robustness-inducing transformations (RIT) have been introduced. By merely applying such transformations as a preprocessing step, a computationally very fast robust estimator can be constructed. Building upon the example of sparse partial least squares (SPLS), this work shows that such an approach can lead to performance close to the computationally more intensive methods. This article proves that the resulting estimator is robust, by showing that it has a bounded influence function. To establish the latter, this article is first to formulate SPLS at the population level and therefrom, to derive (classical) SPLS's influence function. It also shows that the breakdown point of the resulting regression coefficients can approach 50% when properly tuned. Extensive Monte Carlo simulations highlight the advantages of the new method, which performs comparably and at times even better than existing robust methods based on M-estimation, yet at a significantly lower computational burden. Two application studies related to the cancer cell panel of the National Cancer Institute and the chemical analysis of archaeological glass vessels further support the applicability of the proposed robustness-inducing transformations, combined with SPLS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助mgl采纳,获得10
刚刚
刚刚
zyw发布了新的文献求助10
1秒前
打打应助zzzdx采纳,获得10
2秒前
哈哈哈发布了新的文献求助10
2秒前
kitty发布了新的文献求助10
4秒前
xiaofeiyan完成签到 ,获得积分10
5秒前
7秒前
Orange应助珷玞采纳,获得10
7秒前
蝴蝶飞出了潜水钟完成签到,获得积分10
8秒前
入变完成签到 ,获得积分10
9秒前
一丁雨发布了新的文献求助10
11秒前
11秒前
斯文败类应助kitty采纳,获得10
11秒前
暴躁的梦发布了新的文献求助10
11秒前
11秒前
13秒前
14秒前
Kaaaly关注了科研通微信公众号
14秒前
xiaoxiao发布了新的文献求助40
14秒前
slender完成签到,获得积分20
15秒前
猪猪侠发布了新的文献求助10
15秒前
allshestar完成签到 ,获得积分0
16秒前
17秒前
mgl发布了新的文献求助10
17秒前
Janny完成签到,获得积分10
17秒前
RC_Wang发布了新的文献求助10
19秒前
19秒前
ZNX完成签到,获得积分20
20秒前
羽化成环发布了新的文献求助10
20秒前
22秒前
子訡完成签到 ,获得积分10
22秒前
22秒前
从嘉发布了新的文献求助10
24秒前
科目三应助merci采纳,获得10
24秒前
mgl完成签到,获得积分10
24秒前
Hello应助桃子e采纳,获得10
25秒前
暴躁的梦完成签到,获得积分10
26秒前
研小白发布了新的文献求助10
28秒前
zzzdx发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779123
求助须知:如何正确求助?哪些是违规求助? 5645950
关于积分的说明 15451285
捐赠科研通 4910582
什么是DOI,文献DOI怎么找? 2642743
邀请新用户注册赠送积分活动 1590446
关于科研通互助平台的介绍 1544810