已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Elegant robustification of sparse partial least squares by robustness-inducing transformations

稳健性 数学 稳健性(进化) 偏最小二乘回归 应用数学 数学优化 统计 生物化学 化学 基因 离群值
作者
Sven Serneels,Luca Insolia,Tim Verdonck
出处
期刊:Statistics [Informa]
卷期号:: 1-21
标识
DOI:10.1080/02331888.2024.2313507
摘要

Robust alternatives exist for many statistical estimators. State-of-the-art robust methods are fine-tuned to optimize the balance between statistical efficiency and robustness. The resulting estimators may, however, require computationally intensive iterative procedures. Recently, several robustness-inducing transformations (RIT) have been introduced. By merely applying such transformations as a preprocessing step, a computationally very fast robust estimator can be constructed. Building upon the example of sparse partial least squares (SPLS), this work shows that such an approach can lead to performance close to the computationally more intensive methods. This article proves that the resulting estimator is robust, by showing that it has a bounded influence function. To establish the latter, this article is first to formulate SPLS at the population level and therefrom, to derive (classical) SPLS's influence function. It also shows that the breakdown point of the resulting regression coefficients can approach 50% when properly tuned. Extensive Monte Carlo simulations highlight the advantages of the new method, which performs comparably and at times even better than existing robust methods based on M-estimation, yet at a significantly lower computational burden. Two application studies related to the cancer cell panel of the National Cancer Institute and the chemical analysis of archaeological glass vessels further support the applicability of the proposed robustness-inducing transformations, combined with SPLS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助冥王星采纳,获得10
刚刚
量子星尘发布了新的文献求助10
1秒前
隐形曼青应助jjdeng采纳,获得10
1秒前
恒星的恒心完成签到 ,获得积分10
2秒前
wanci应助lolly采纳,获得10
2秒前
小蘑菇应助搞怪山晴采纳,获得10
3秒前
4秒前
烟花应助徐嘎嘎采纳,获得10
5秒前
5秒前
5秒前
5秒前
舒适的方盒完成签到 ,获得积分10
5秒前
JaneChen发布了新的文献求助10
5秒前
6秒前
qqer完成签到,获得积分10
7秒前
冥王星发布了新的文献求助10
7秒前
Manta完成签到,获得积分10
8秒前
Hello应助执着的觅露采纳,获得30
8秒前
11秒前
11秒前
开心依珊发布了新的文献求助10
11秒前
孟晓晖完成签到 ,获得积分10
11秒前
14秒前
kk完成签到,获得积分10
14秒前
15秒前
djxdjt发布了新的文献求助10
15秒前
jjdeng发布了新的文献求助10
16秒前
orixero应助jimskylxk采纳,获得10
16秒前
今后应助caoyy采纳,获得10
17秒前
尝原完成签到,获得积分10
17秒前
科研通AI6.1应助小明采纳,获得10
17秒前
Aimee发布了新的文献求助30
19秒前
lydia完成签到,获得积分10
20秒前
开心依珊完成签到,获得积分20
20秒前
21秒前
大模型应助Vincent采纳,获得10
23秒前
25秒前
30秒前
大个应助柍踏采纳,获得10
30秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771909
求助须知:如何正确求助?哪些是违规求助? 5594239
关于积分的说明 15428487
捐赠科研通 4905096
什么是DOI,文献DOI怎么找? 2639208
邀请新用户注册赠送积分活动 1587085
关于科研通互助平台的介绍 1541964