Elegant robustification of sparse partial least squares by robustness-inducing transformations

稳健性 数学 稳健性(进化) 偏最小二乘回归 应用数学 数学优化 统计 生物化学 离群值 基因 化学
作者
Sven Serneels,Luca Insolia,Tim Verdonck
出处
期刊:Statistics [Informa]
卷期号:: 1-21
标识
DOI:10.1080/02331888.2024.2313507
摘要

Robust alternatives exist for many statistical estimators. State-of-the-art robust methods are fine-tuned to optimize the balance between statistical efficiency and robustness. The resulting estimators may, however, require computationally intensive iterative procedures. Recently, several robustness-inducing transformations (RIT) have been introduced. By merely applying such transformations as a preprocessing step, a computationally very fast robust estimator can be constructed. Building upon the example of sparse partial least squares (SPLS), this work shows that such an approach can lead to performance close to the computationally more intensive methods. This article proves that the resulting estimator is robust, by showing that it has a bounded influence function. To establish the latter, this article is first to formulate SPLS at the population level and therefrom, to derive (classical) SPLS's influence function. It also shows that the breakdown point of the resulting regression coefficients can approach 50% when properly tuned. Extensive Monte Carlo simulations highlight the advantages of the new method, which performs comparably and at times even better than existing robust methods based on M-estimation, yet at a significantly lower computational burden. Two application studies related to the cancer cell panel of the National Cancer Institute and the chemical analysis of archaeological glass vessels further support the applicability of the proposed robustness-inducing transformations, combined with SPLS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助闭眼听风雨采纳,获得10
1秒前
yyanxuemin919发布了新的文献求助10
2秒前
青葱鱼块完成签到 ,获得积分10
5秒前
浅沐发布了新的文献求助10
5秒前
3dyf发布了新的文献求助10
7秒前
8秒前
Keyto7应助Wenfeifei采纳,获得10
10秒前
丹D完成签到,获得积分10
11秒前
蒲云海发布了新的文献求助10
16秒前
16秒前
17秒前
17秒前
lessismore发布了新的文献求助10
19秒前
善学以致用应助kk采纳,获得10
19秒前
20秒前
21秒前
Ava应助合适的晓夏采纳,获得10
21秒前
22秒前
豆豆发布了新的文献求助10
22秒前
24秒前
dajiejie完成签到 ,获得积分10
25秒前
Keyto7应助Wenfeifei采纳,获得10
25秒前
26秒前
浮游应助楼梯口无头女孩采纳,获得10
26秒前
无辜之卉发布了新的文献求助10
27秒前
FJ发布了新的文献求助10
27秒前
大龙哥886应助科研通管家采纳,获得10
28秒前
BowieHuang应助科研通管家采纳,获得10
28秒前
小二郎应助科研通管家采纳,获得10
28秒前
28秒前
乐乐应助科研通管家采纳,获得10
28秒前
28秒前
CodeCraft应助豆豆采纳,获得10
29秒前
忐忑的果汁完成签到,获得积分10
30秒前
aging00完成签到,获得积分10
37秒前
lvyuan完成签到,获得积分10
42秒前
gigi完成签到 ,获得积分10
42秒前
Ava应助aging00采纳,获得10
43秒前
44秒前
skip完成签到,获得积分10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563611
求助须知:如何正确求助?哪些是违规求助? 4648542
关于积分的说明 14685176
捐赠科研通 4590481
什么是DOI,文献DOI怎么找? 2518577
邀请新用户注册赠送积分活动 1491168
关于科研通互助平台的介绍 1462471