Elegant robustification of sparse partial least squares by robustness-inducing transformations

稳健性 数学 稳健性(进化) 偏最小二乘回归 应用数学 数学优化 统计 生物化学 离群值 基因 化学
作者
Sven Serneels,Luca Insolia,Tim Verdonck
出处
期刊:Statistics [Taylor & Francis]
卷期号:: 1-21
标识
DOI:10.1080/02331888.2024.2313507
摘要

Robust alternatives exist for many statistical estimators. State-of-the-art robust methods are fine-tuned to optimize the balance between statistical efficiency and robustness. The resulting estimators may, however, require computationally intensive iterative procedures. Recently, several robustness-inducing transformations (RIT) have been introduced. By merely applying such transformations as a preprocessing step, a computationally very fast robust estimator can be constructed. Building upon the example of sparse partial least squares (SPLS), this work shows that such an approach can lead to performance close to the computationally more intensive methods. This article proves that the resulting estimator is robust, by showing that it has a bounded influence function. To establish the latter, this article is first to formulate SPLS at the population level and therefrom, to derive (classical) SPLS's influence function. It also shows that the breakdown point of the resulting regression coefficients can approach 50% when properly tuned. Extensive Monte Carlo simulations highlight the advantages of the new method, which performs comparably and at times even better than existing robust methods based on M-estimation, yet at a significantly lower computational burden. Two application studies related to the cancer cell panel of the National Cancer Institute and the chemical analysis of archaeological glass vessels further support the applicability of the proposed robustness-inducing transformations, combined with SPLS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
时遇发布了新的文献求助10
1秒前
1秒前
数的羊都跑了完成签到 ,获得积分10
1秒前
66668888发布了新的文献求助10
2秒前
CHANGJIAGAO完成签到,获得积分20
2秒前
2秒前
2秒前
生动梦松应助PERRYE采纳,获得30
2秒前
vtfangfangfang完成签到,获得积分10
2秒前
3秒前
风笛发布了新的文献求助10
3秒前
SciGPT应助十一玮采纳,获得10
3秒前
4秒前
Kyrie完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
天天快乐应助饱满的妙梦采纳,获得10
4秒前
mookie发布了新的文献求助10
5秒前
宋启文完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
yurunxintian完成签到,获得积分10
6秒前
稳如老狗发布了新的文献求助10
6秒前
6秒前
太牛的GGB发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
12345完成签到,获得积分10
8秒前
落寞灵安发布了新的文献求助10
8秒前
卢玥沅发布了新的文献求助10
8秒前
Gwinn发布了新的文献求助10
9秒前
慢羊羊发布了新的文献求助10
9秒前
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4933396
求助须知:如何正确求助?哪些是违规求助? 4201613
关于积分的说明 13054063
捐赠科研通 3975660
什么是DOI,文献DOI怎么找? 2178529
邀请新用户注册赠送积分活动 1194810
关于科研通互助平台的介绍 1106200