Integrating traffic pollution dispersion into spatiotemporal NO2 prediction

色散(光学) 环境科学 污染 环境规划 物理 生态学 光学 生物
作者
Yunhan Wu,Jianzhao Bi,Amanda J. Gassett,Michael T. Young,Adam A. Szpiro,Joel D. Kaufman
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:925: 171652-171652
标识
DOI:10.1016/j.scitotenv.2024.171652
摘要

Accurately predicting ambient NO2 concentrations has great public health importance, as traffic-related air pollution is of major concern in urban areas. In this study, we present a novel approach incorporating traffic contribution to NO2 prediction in a fine-scale spatiotemporal model. We used nationally available traffic estimate dataset in a scalable dispersion model, Research LINE source dispersion model (RLINE). RLINE estimates then served as an additional input for a validated spatiotemporal pollution modeling approach. Our analysis uses measurement data collected by the Multi-Ethnic Study of Atherosclerosis and Air Pollution in the greater Los Angeles area between 2006 and 2009. We predicted road-type-specific annual average daily traffic (AADT) on road segments via national-level spatial regression models with nearest-neighbor Gaussian processes (spNNGP); the spNNGP models were trained based on over half a million point-level traffic volume measurements nationwide. AADT estimates on all highways were combined with meteorological data in RLINE models. We evaluated two strategies to integrate RLINE estimates into spatiotemporal NO2 models: 1) incorporating RLINE estimates as a space-only covariate and, 2) as a spatiotemporal covariate. The results showed that integrating the RLINE estimates as a space-only covariate improved overall cross-validation R2 from 0.83 to 0.84, and root mean squared error (RMSE) from 3.58 to 3.48 ppb. Incorporating the estimates as a spatiotemporal covariate resulted in similar model improvement. The improvement of our spatiotemporal model was more profound in roadside monitors alongside highways, with R2 increasing from 0.56 to 0.66 and RMSE decreasing from 3.52 to 3.11 ppb. The observed improvement indicates that the RLINE estimates enhanced the model's predictive capabilities for roadside NO2 concentration gradients even after considering a comprehensive list of geographic covariates including the distance to roads. Our proposed modeling framework can be generalized to improve high-resolution prediction of NO2 exposure – especially near major roads in the U.S.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷萃咖啡完成签到,获得积分10
刚刚
1秒前
幸福的蓝血完成签到,获得积分10
1秒前
CUREME完成签到,获得积分10
1秒前
zqx完成签到,获得积分10
1秒前
努努发布了新的文献求助10
2秒前
uilyang完成签到,获得积分10
2秒前
xia_完成签到,获得积分10
2秒前
英俊的铭应助naitangkeke采纳,获得10
2秒前
刘媛发布了新的文献求助10
2秒前
Wang完成签到,获得积分20
2秒前
123完成签到,获得积分10
3秒前
优秀的采蓝完成签到 ,获得积分10
3秒前
龙眼完成签到,获得积分10
3秒前
罗静完成签到,获得积分10
3秒前
江月渡完成签到,获得积分10
3秒前
cgliuhx完成签到,获得积分10
3秒前
高兴的羊发布了新的文献求助10
4秒前
麦哎发布了新的文献求助10
4秒前
DQ完成签到 ,获得积分10
4秒前
Akim应助肚子饿扁了采纳,获得10
4秒前
uilyang发布了新的文献求助10
5秒前
共享精神应助Zirong采纳,获得10
5秒前
herococa应助CP采纳,获得10
6秒前
sy完成签到,获得积分10
6秒前
带路完成签到,获得积分10
6秒前
6秒前
容陷发布了新的文献求助10
7秒前
颿曦完成签到,获得积分10
7秒前
7秒前
耶瑟儿发布了新的文献求助10
8秒前
少堂完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
9秒前
大白发布了新的文献求助10
9秒前
Ran-HT完成签到,获得积分10
9秒前
Eusha完成签到,获得积分10
9秒前
Hover完成签到,获得积分0
9秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950088
求助须知:如何正确求助?哪些是违规求助? 3495545
关于积分的说明 11077625
捐赠科研通 3226040
什么是DOI,文献DOI怎么找? 1783457
邀请新用户注册赠送积分活动 867687
科研通“疑难数据库(出版商)”最低求助积分说明 800874