亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Integrating traffic pollution dispersion into spatiotemporal NO2 prediction

色散(光学) 环境科学 污染 环境规划 物理 生态学 光学 生物
作者
Yunhan Wu,Jianzhao Bi,Amanda J. Gassett,Michael T. Young,Adam A. Szpiro,Joel D. Kaufman
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:925: 171652-171652
标识
DOI:10.1016/j.scitotenv.2024.171652
摘要

Accurately predicting ambient NO2 concentrations has great public health importance, as traffic-related air pollution is of major concern in urban areas. In this study, we present a novel approach incorporating traffic contribution to NO2 prediction in a fine-scale spatiotemporal model. We used nationally available traffic estimate dataset in a scalable dispersion model, Research LINE source dispersion model (RLINE). RLINE estimates then served as an additional input for a validated spatiotemporal pollution modeling approach. Our analysis uses measurement data collected by the Multi-Ethnic Study of Atherosclerosis and Air Pollution in the greater Los Angeles area between 2006 and 2009. We predicted road-type-specific annual average daily traffic (AADT) on road segments via national-level spatial regression models with nearest-neighbor Gaussian processes (spNNGP); the spNNGP models were trained based on over half a million point-level traffic volume measurements nationwide. AADT estimates on all highways were combined with meteorological data in RLINE models. We evaluated two strategies to integrate RLINE estimates into spatiotemporal NO2 models: 1) incorporating RLINE estimates as a space-only covariate and, 2) as a spatiotemporal covariate. The results showed that integrating the RLINE estimates as a space-only covariate improved overall cross-validation R2 from 0.83 to 0.84, and root mean squared error (RMSE) from 3.58 to 3.48 ppb. Incorporating the estimates as a spatiotemporal covariate resulted in similar model improvement. The improvement of our spatiotemporal model was more profound in roadside monitors alongside highways, with R2 increasing from 0.56 to 0.66 and RMSE decreasing from 3.52 to 3.11 ppb. The observed improvement indicates that the RLINE estimates enhanced the model's predictive capabilities for roadside NO2 concentration gradients even after considering a comprehensive list of geographic covariates including the distance to roads. Our proposed modeling framework can be generalized to improve high-resolution prediction of NO2 exposure – especially near major roads in the U.S.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夜阑听雨完成签到,获得积分0
5秒前
容若发布了新的文献求助10
12秒前
远方发布了新的文献求助10
14秒前
56秒前
科研小刘发布了新的文献求助10
1分钟前
lingduyu发布了新的文献求助10
1分钟前
1分钟前
1分钟前
激动的似狮完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Ying完成签到,获得积分10
1分钟前
lingduyu完成签到,获得积分10
1分钟前
健忘沛春完成签到 ,获得积分10
2分钟前
Singularity应助Milesma采纳,获得10
3分钟前
3分钟前
wanci应助科研通管家采纳,获得10
3分钟前
Aira发布了新的文献求助10
3分钟前
3分钟前
李健应助Aira采纳,获得10
3分钟前
3分钟前
serein发布了新的文献求助10
3分钟前
3分钟前
健忘沛春发布了新的文献求助10
3分钟前
xz完成签到 ,获得积分10
4分钟前
youngyang完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
刘快乐发布了新的文献求助10
4分钟前
4分钟前
江子川发布了新的文献求助10
5分钟前
5分钟前
上官若男应助科研通管家采纳,获得10
5分钟前
帅气的藏鸟完成签到 ,获得积分10
5分钟前
非洲大象发布了新的文献求助50
6分钟前
慕青应助啊呜采纳,获得10
6分钟前
Amber完成签到 ,获得积分10
6分钟前
6分钟前
脑洞疼应助YUYUYU采纳,获得10
6分钟前
啊呜发布了新的文献求助10
6分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142675
求助须知:如何正确求助?哪些是违规求助? 2793563
关于积分的说明 7806945
捐赠科研通 2449831
什么是DOI,文献DOI怎么找? 1303501
科研通“疑难数据库(出版商)”最低求助积分说明 626959
版权声明 601314