A novel topology optimization of fin structure in shell-tube phase change accumulator considering the double objective functions and natural convection

自然对流 累加器(密码学) 拓扑优化 拓扑(电路) 液压蓄能器 相变材料 热的 数学优化 数学 计算机科学 材料科学 机械工程 对流 机械 热力学 工程类 算法 物理 组合数学 有限元法
作者
Yu Chen,Yun Liu,Liang Zeng,Wenxun Cui,Jianfei Xie
出处
期刊:Journal of energy storage [Elsevier]
卷期号:80: 110327-110327 被引量:5
标识
DOI:10.1016/j.est.2023.110327
摘要

Shell-tube phase change accumulator (STPCA) has been widely applied in renewable energy generation and energy-saving building field. However, due to the low thermal conductivity of phase change material (PCM), its structure needs to be carefully designed to obtain the best heat release and storage rate. Most of the traditional design schemes are trial and error method, which has long design cycle, low efficiency, and difficulty in obtaining the optimal structure. In this contribution, we firstly adopt the topology optimization methods to obtain novel fins in STPCA considering natural convection. Then, we compared the difference between different objective functions and demonstrated the superiority of topology optimization. In addition, we have further studied fin design under double objective functions with different weight ratios and analyzed the synergistic effects on the objective functions. The results have shown that after natural convection has been considered in the topological optimization process, it can help obtain a better structure, and the generated fins can better enhance the performance of STPCA. For the case of single objective function, the conclusions are as follows: the maximum average temperature can be used to obtain the faster melting speed, while the minimum temperature difference can be used to obtain the best temperature uniformity. The conclusions of using double objective function are as follows: when the weight ratio of the maximum average temperature and the minimum temperature difference is 0.6: 0.4, the field synergy angle is smallest, and the performance of STPCA is further improved. This contribution can provide a guidance for STPCA design and enhance its thermal storage performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
研友_汪老头完成签到,获得积分10
刚刚
雪花君完成签到,获得积分10
1秒前
派大星发布了新的文献求助10
1秒前
科研通AI5应助hzauchen采纳,获得10
1秒前
八九完成签到,获得积分10
2秒前
快乐小白菜应助圈圈采纳,获得10
2秒前
3秒前
冷艳后妈发布了新的文献求助10
3秒前
蒋念寒发布了新的文献求助10
3秒前
36456657应助CC采纳,获得10
3秒前
猪猪猪发布了新的文献求助10
3秒前
3秒前
scxl2000完成签到,获得积分10
4秒前
4秒前
oyc完成签到,获得积分10
4秒前
4秒前
4秒前
Leexxxhaoo发布了新的文献求助10
5秒前
FFFFFFF完成签到,获得积分10
5秒前
5秒前
LIU发布了新的文献求助10
5秒前
小二郎应助医路有你采纳,获得10
5秒前
研友_VZG7GZ应助卡顿公开采纳,获得10
5秒前
可爱的函函应助一直采纳,获得20
5秒前
ufuon完成签到,获得积分10
6秒前
VDC应助MrFamous采纳,获得50
7秒前
娜行发布了新的文献求助10
7秒前
啦啦鱼完成签到 ,获得积分10
7秒前
7秒前
8秒前
习习发布了新的文献求助10
8秒前
8秒前
wanci应助drizzling采纳,获得10
8秒前
r93527005完成签到,获得积分10
8秒前
9秒前
霸气谷蕊完成签到 ,获得积分10
11秒前
羊羊羊完成签到,获得积分10
11秒前
11秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678