Study on spatiotemporal dynamic characteristics of precipitation and causes of waterlogging based on a data-driven framework

内涝(考古学) 北京 降水 环境科学 大洪水 城市化 中国 地理 气象学 生态学 湿地 考古 生物
作者
Feifei Han,Xueyu Zhang,Jingshan Yu,Shugao Xu,Guihuan Zhou,Shuang Li
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:913: 169796-169796 被引量:3
标识
DOI:10.1016/j.scitotenv.2023.169796
摘要

The discernible alterations in regional precipitation patterns, influenced by the intersecting factors of urbanization and climate change, exert a substantial impact on urban flood disasters. Based on multi-source precipitation data, a data-driven model fusion framework was constructed to analyze the spatial and temporal dynamic distribution characteristics of precipitation in Beijing. Wavelet analysis method was used to reveal the periodic variation characteristics and multi-scale effects of precipitation, and the machine learning method was used to characterize the spatiotemporal dynamic change pattern of precipitation. Finally, geographical detector was used to explore the causes of waterlogging in Beijing. The research outcomes reveal a disparate distribution of precipitation across the year, with 78 % of the total precipitation occurring during the flood season. The principal periodic cycles observed in annual cumulative precipitation (ACP) were identified at 21, 13, and 9-year intervals. Spatially, while a decreasing trend in precipitation was observed in most areas of Beijing, 63.4 % of the region exhibited an escalating concentration trend, thereby heightening the risk of urban waterlogging. Machine learning model clustering elucidated three predominant spatial dynamic distribution patterns of precipitation in Beijing. The utilization of web crawler technology to acquire water accumulation data addressed challenges in obtaining urban waterlogging data, and validation through Landsat8 images enhanced data reliability and authenticity. Factor detection shows that road network density, topography, and precipitation were the main factors affecting urban waterlogging. These findings hold significant implications for informing flood control strategies and emergency management protocols in urban areas across China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小yy完成签到 ,获得积分10
1秒前
种一个月亮完成签到,获得积分10
1秒前
丰富猕猴桃完成签到,获得积分10
1秒前
yaoyao264完成签到,获得积分10
1秒前
不如是完成签到,获得积分10
2秒前
oubggggggg发布了新的文献求助30
2秒前
酷波er应助俏皮觅风采纳,获得10
2秒前
我是老大应助SimmonsLI采纳,获得10
3秒前
尼斯卡完成签到,获得积分10
3秒前
4秒前
多多少少忖测的情完成签到,获得积分10
4秒前
lgh发布了新的文献求助10
4秒前
共享精神应助凉雨渲采纳,获得10
4秒前
要减肥的天奇完成签到,获得积分20
4秒前
sada发布了新的文献求助10
4秒前
YAN关闭了YAN文献求助
5秒前
zxz发布了新的文献求助10
5秒前
5秒前
5秒前
方姿完成签到,获得积分20
8秒前
8秒前
启航完成签到,获得积分10
8秒前
8秒前
安静无招发布了新的文献求助10
9秒前
子车茗应助Ganlou采纳,获得10
9秒前
冷酷思远完成签到 ,获得积分10
9秒前
10秒前
GAN完成签到,获得积分10
10秒前
科研通AI2S应助w我我我采纳,获得10
10秒前
10秒前
林贞宝宝完成签到,获得积分20
10秒前
ertredffg发布了新的文献求助10
11秒前
11秒前
SAINT发布了新的文献求助10
11秒前
oubggggggg完成签到,获得积分10
12秒前
vvSirius完成签到,获得积分10
12秒前
12秒前
12秒前
Hello应助1LDan采纳,获得10
12秒前
明朗完成签到 ,获得积分10
12秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167746
求助须知:如何正确求助?哪些是违规求助? 2819117
关于积分的说明 7925260
捐赠科研通 2479015
什么是DOI,文献DOI怎么找? 1320596
科研通“疑难数据库(出版商)”最低求助积分说明 632856
版权声明 602443