Study on spatiotemporal dynamic characteristics of precipitation and causes of waterlogging based on a data-driven framework

内涝(考古学) 北京 降水 环境科学 大洪水 城市化 中国 地理 气象学 生态学 湿地 考古 生物
作者
Feifei Han,Xueyu Zhang,Jingshan Yu,Shugao Xu,Guihuan Zhou,Shuang Li
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:913: 169796-169796 被引量:3
标识
DOI:10.1016/j.scitotenv.2023.169796
摘要

The discernible alterations in regional precipitation patterns, influenced by the intersecting factors of urbanization and climate change, exert a substantial impact on urban flood disasters. Based on multi-source precipitation data, a data-driven model fusion framework was constructed to analyze the spatial and temporal dynamic distribution characteristics of precipitation in Beijing. Wavelet analysis method was used to reveal the periodic variation characteristics and multi-scale effects of precipitation, and the machine learning method was used to characterize the spatiotemporal dynamic change pattern of precipitation. Finally, geographical detector was used to explore the causes of waterlogging in Beijing. The research outcomes reveal a disparate distribution of precipitation across the year, with 78 % of the total precipitation occurring during the flood season. The principal periodic cycles observed in annual cumulative precipitation (ACP) were identified at 21, 13, and 9-year intervals. Spatially, while a decreasing trend in precipitation was observed in most areas of Beijing, 63.4 % of the region exhibited an escalating concentration trend, thereby heightening the risk of urban waterlogging. Machine learning model clustering elucidated three predominant spatial dynamic distribution patterns of precipitation in Beijing. The utilization of web crawler technology to acquire water accumulation data addressed challenges in obtaining urban waterlogging data, and validation through Landsat8 images enhanced data reliability and authenticity. Factor detection shows that road network density, topography, and precipitation were the main factors affecting urban waterlogging. These findings hold significant implications for informing flood control strategies and emergency management protocols in urban areas across China.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
kxy0311发布了新的文献求助10
1秒前
dalian发布了新的文献求助10
1秒前
2秒前
坚定天蓝完成签到,获得积分10
2秒前
张弛华发布了新的文献求助10
3秒前
3秒前
mmyq发布了新的文献求助10
3秒前
3秒前
4秒前
张学良发布了新的文献求助10
4秒前
4秒前
cds完成签到,获得积分10
4秒前
4秒前
5秒前
cds发布了新的文献求助10
6秒前
abc发布了新的文献求助10
7秒前
Jasper应助山茶采纳,获得10
7秒前
隐形曼青应助刘丰铭采纳,获得10
7秒前
orixero应助韩霖采纳,获得10
7秒前
聪慧的土豆关注了科研通微信公众号
7秒前
9秒前
9秒前
解语花发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
Stella应助甜的瓜采纳,获得10
11秒前
13秒前
FashionBoy应助蔚蓝的天空采纳,获得10
13秒前
kk发布了新的文献求助10
13秒前
LFC发布了新的文献求助10
13秒前
14秒前
CodeCraft应助周苗采纳,获得10
14秒前
FashionBoy应助优秀的凡蕾采纳,获得10
15秒前
15秒前
JamesPei应助zpw123123采纳,获得10
16秒前
16秒前
16秒前
爱笑以松完成签到,获得积分10
16秒前
17秒前
mh发布了新的文献求助50
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5609955
求助须知:如何正确求助?哪些是违规求助? 4694535
关于积分的说明 14882709
捐赠科研通 4720767
什么是DOI,文献DOI怎么找? 2544982
邀请新用户注册赠送积分活动 1509819
关于科研通互助平台的介绍 1473013