A literature review on satellite image time series forecasting: Methods and applications for remote sensing

系列(地层学) 遥感 卫星 计算机科学 时间序列 卫星图像 气象学 地理 地质学 机器学习 工程类 航空航天工程 古生物学
作者
Carlos Lara-Álvarez,Juan J. Flores,Héctor Rodríguez Rangel,Rodrigo Lopez‐Farias
出处
期刊:Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery [Wiley]
被引量:1
标识
DOI:10.1002/widm.1528
摘要

Abstract Satellite image time‐series are time series produced from remote sensing images; they generally correspond to features or indicators extracted from those images. With the increasing availability of remote sensing images and new methodologies to process such data, image time‐series methods have been used extensively for assessing temporal pattern detection, monitoring, classification, object detection, and feature estimation. Since the study of time series is broad, this article focuses on analyzing articles related to forecasting the value of one or more attributes of the image time‐series. The image time series forecasting (ITSF) problem appears in different disciplines; most focus on improving the quality of life by harnessing natural resources for sustainable development and minimizing the lethality of dangerous natural phenomena. Scientists tackle these problems using different tools or methods depending on the application. This review analyzes the field's leading, most recent contributions, grouping them by application area and solution methods. Our findings indicate that artificial neural networks, regression trees, support vector regression, and cellular automata are the most common methods for ITSF. Application areas address this problem as renewable energy, agriculture, and land‐use change. This study retrieved and analyzed relevant information about the recent activity of image time series forecasting, generating a reproducible list of the most pertinent articles in the field published from 2009 to 2021. To the author's best knowledge, this is the first review presenting and analyzing a reproducible list of the most relevant state‐of‐the‐art articles focusing on the applications, techniques, and research trends for ITSF. This article is categorized under: Algorithmic Development > Spatial and Temporal Data Mining Technologies > Machine Learning Technologies > Prediction
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
时尚初柳应助潇洒莞采纳,获得10
1秒前
海绵宝宝完成签到,获得积分10
1秒前
打打应助whq531608采纳,获得10
2秒前
2秒前
hhc完成签到,获得积分10
3秒前
aaa发布了新的文献求助10
4秒前
科研通AI2S应助端庄之云采纳,获得10
4秒前
海绵宝宝发布了新的文献求助10
5秒前
yzw完成签到,获得积分10
5秒前
大个应助3W采纳,获得10
7秒前
栗子应助TAN采纳,获得10
7秒前
8秒前
xiax03发布了新的文献求助10
9秒前
QQQ发布了新的文献求助30
9秒前
10秒前
Lyuhng+1完成签到 ,获得积分10
10秒前
10秒前
CodeCraft应助泯珉采纳,获得10
11秒前
魔力巴啦啦完成签到 ,获得积分10
11秒前
傅全有发布了新的文献求助10
11秒前
lh发布了新的文献求助30
12秒前
上官若男应助魔幻老黑采纳,获得10
13秒前
简单的芷云完成签到,获得积分10
13秒前
端庄之云完成签到,获得积分10
14秒前
希望天下0贩的0应助呆鸥采纳,获得30
15秒前
xun发布了新的文献求助10
16秒前
16秒前
愤怒的山兰完成签到,获得积分10
16秒前
aaa完成签到,获得积分10
18秒前
科研废物完成签到 ,获得积分10
18秒前
科研通AI2S应助赖皮蛇采纳,获得10
19秒前
犹豫的若发布了新的文献求助10
19秒前
Salamenda完成签到,获得积分10
19秒前
温柔的老头完成签到,获得积分10
19秒前
flypipidan完成签到,获得积分20
20秒前
rainbow127完成签到,获得积分10
21秒前
小张完成签到 ,获得积分10
22秒前
listener完成签到,获得积分10
23秒前
23秒前
25秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3205809
求助须知:如何正确求助?哪些是违规求助? 2854953
关于积分的说明 8097188
捐赠科研通 2519991
什么是DOI,文献DOI怎么找? 1352776
科研通“疑难数据库(出版商)”最低求助积分说明 641624
邀请新用户注册赠送积分活动 612642