AttentiveSkin: To Predict Skin Corrosion/Irritation Potentials of Chemicals via Explainable Machine Learning Methods

皮肤刺激 分类器(UML) 机器学习 二元分类 接收机工作特性 计算机科学 生物信息学 二进制数 数据挖掘 人工智能 化学 支持向量机 皮肤病科 数学 医学 生物化学 算术 基因
作者
Zejun Huang,Shang Lou,Haoqiang Wang,Weihua Li,Guixia Liu,Yun Tang
出处
期刊:Chemical Research in Toxicology [American Chemical Society]
卷期号:37 (2): 361-373 被引量:1
标识
DOI:10.1021/acs.chemrestox.3c00332
摘要

Skin Corrosion/Irritation (Corr./Irrit.) has long been a health hazard in the Globally Harmonized System (GHS). Several in silico models have been built to predict Skin Corr./Irrit. as an alternative to the increasingly restricted animal testing. However, current studies are limited by data amount/quality and model availability. To address these issues, we compiled a traceable consensus GHS data set comprising 731 Corr., 1283 Irrit., and 1205 negative (Neg.) samples from 6 governmental databases and 2 external data sets. Then, a series of binary classifiers were developed with five machine learning (ML) algorithms and six molecular representations. For 10-fold cross-validation, the best Corr. vs Neg. classifier achieved an Area Under the Receiver Operating Characteristic Curve (AUC) of 97.1%, while the best Irrit. vs Neg. classifier achieved an AUC of 84.7%. Compared with existing in silico tools on external validation, our Attentive FP classifiers showed the highest metrics on Corr. vs Neg. and the second highest accuracy on Irrit. vs Neg. The SHapley Additive exPlanation approach was further applied to figure out important molecular features, and the attention weights were visualized to perform interpretable prediction. Structural alerts associated with Skin Corr./Irrit. were also identified. The interpretable Attentive FP classifiers were integrated into the software AttentiveSkin at https://github.com/BeeBeeWong/AttentiveSkin. The conventional ML classifiers are also provided on our platform admetSAR at http://lmmd.ecust.edu.cn/admetsar2/. Considering the data deficiency and the limited model availability of Skin Corr./Irrit., we believe that our data set and models could facilitate chemical safety assessment and relevant studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小刘发布了新的文献求助10
刚刚
xiaoxuening完成签到 ,获得积分10
刚刚
研友_ngJQzL完成签到,获得积分10
1秒前
ll完成签到 ,获得积分10
1秒前
苗条的小肥羊关注了科研通微信公众号
2秒前
sunnyYUE发布了新的文献求助10
2秒前
hjh完成签到,获得积分10
3秒前
舒适柠檬发布了新的文献求助10
6秒前
BKEL完成签到,获得积分10
6秒前
6秒前
7秒前
xiaotutu发布了新的文献求助200
7秒前
大模型应助科研通管家采纳,获得10
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
一枚青椒应助科研通管家采纳,获得10
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
8秒前
打打应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
Singularity应助科研通管家采纳,获得10
8秒前
8秒前
小肉球完成签到 ,获得积分10
11秒前
爱听歌的亦玉完成签到,获得积分10
11秒前
彩色莞发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
KatyPerry发布了新的文献求助10
14秒前
Mobius完成签到,获得积分10
16秒前
奶糖完成签到 ,获得积分20
16秒前
常小敏完成签到 ,获得积分10
16秒前
若冰完成签到,获得积分10
17秒前
语物发布了新的文献求助10
17秒前
李沐完成签到,获得积分10
18秒前
a1441949575完成签到 ,获得积分10
18秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160145
求助须知:如何正确求助?哪些是违规求助? 2811106
关于积分的说明 7891067
捐赠科研通 2470194
什么是DOI,文献DOI怎么找? 1315360
科研通“疑难数据库(出版商)”最低求助积分说明 630822
版权声明 602022