Estimation methods for estimands using the treatment policy strategy; a simulation study based on the PIONEER 1 Trial

估计 计量经济学 计算机科学 管理科学 经济 管理
作者
J. Simon Bell,Thomas Drury,Tobias Mütze,Christian Bressen Pipper,Lorenzo Guizzaro,Marian Mitroiu,Khadija Rantell,Marcel Wolbers,David Wright
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2402.12850
摘要

Estimands using the treatment policy strategy for addressing intercurrent events are common in Phase III clinical trials. One estimation approach for this strategy is retrieved dropout whereby observed data following an intercurrent event are used to multiply impute missing data. However, such methods have had issues with variance inflation and model fitting due to data sparsity. This paper introduces likelihood-based versions of these approaches, investigating and comparing their statistical properties to the existing retrieved dropout approaches, simpler analysis models and reference-based multiple imputation. We use a simulation based upon the data from the PIONEER 1 Phase III clinical trial in Type II diabetics to present complex and relevant estimation challenges. The likelihood-based methods display similar statistical properties to their multiple imputation equivalents, but all retrieved dropout approaches suffer from high variance. Retrieved dropout approaches appear less biased than reference-based approaches, resulting in a bias-variance trade-off, but we conclude that the large degree of variance inflation is often more problematic than the bias. Therefore, only the simpler retrieved dropout models appear appropriate as a primary analysis in a clinical trial, and only where it is believed most data following intercurrent events will be observed. The jump-to-reference approach may represent a more promising estimation approach for symptomatic treatments due to its relatively high power and ability to fit in the presence of much missing data, despite its strong assumptions and tendency towards conservative bias. More research is needed to further develop how to estimate the treatment effect for a treatment policy strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
受伤金鑫发布了新的文献求助10
刚刚
刚刚
刚刚
幸运星发布了新的文献求助10
1秒前
魔幻的旋蒸完成签到,获得积分10
2秒前
Lotus完成签到,获得积分10
2秒前
gg发布了新的文献求助10
2秒前
迪迦发布了新的文献求助10
4秒前
nature完成签到 ,获得积分10
5秒前
5秒前
5秒前
金桂琴完成签到,获得积分20
6秒前
Ava应助TNT采纳,获得10
6秒前
wanci应助敏感的盼夏采纳,获得10
7秒前
8秒前
lzy完成签到 ,获得积分10
9秒前
田様应助鲨鱼鲨鱼鲨鱼采纳,获得10
9秒前
斯文败类应助mojomars采纳,获得10
10秒前
10秒前
11秒前
12秒前
每天都要开心完成签到 ,获得积分10
13秒前
丘比特应助栗荔采纳,获得10
13秒前
13秒前
14秒前
14秒前
循环bug发布了新的文献求助10
16秒前
一树春风发布了新的文献求助10
16秒前
16秒前
16秒前
Owen应助追梦采纳,获得10
17秒前
17秒前
斯嘎尔说它想你了完成签到,获得积分10
18秒前
18秒前
19秒前
22D关闭了22D文献求助
19秒前
20秒前
20秒前
乐乐发布了新的文献求助10
21秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459066
求助须知:如何正确求助?哪些是违规求助? 3053650
关于积分的说明 9037605
捐赠科研通 2742924
什么是DOI,文献DOI怎么找? 1504562
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694589