Estimation methods for estimands using the treatment policy strategy; a simulation study based on the PIONEER 1 Trial

估计 计量经济学 计算机科学 管理科学 经济 管理
作者
James Bell,Thomas Drury,Tobias Mütze,Christian Bressen Pipper,Lorenzo Guizzaro,Marian Mitroiu,Khadija Rantell,Marcel Wolbers,David Wright
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2402.12850
摘要

Estimands using the treatment policy strategy for addressing intercurrent events are common in Phase III clinical trials. One estimation approach for this strategy is retrieved dropout whereby observed data following an intercurrent event are used to multiply impute missing data. However, such methods have had issues with variance inflation and model fitting due to data sparsity. This paper introduces likelihood-based versions of these approaches, investigating and comparing their statistical properties to the existing retrieved dropout approaches, simpler analysis models and reference-based multiple imputation. We use a simulation based upon the data from the PIONEER 1 Phase III clinical trial in Type II diabetics to present complex and relevant estimation challenges. The likelihood-based methods display similar statistical properties to their multiple imputation equivalents, but all retrieved dropout approaches suffer from high variance. Retrieved dropout approaches appear less biased than reference-based approaches, resulting in a bias-variance trade-off, but we conclude that the large degree of variance inflation is often more problematic than the bias. Therefore, only the simpler retrieved dropout models appear appropriate as a primary analysis in a clinical trial, and only where it is believed most data following intercurrent events will be observed. The jump-to-reference approach may represent a more promising estimation approach for symptomatic treatments due to its relatively high power and ability to fit in the presence of much missing data, despite its strong assumptions and tendency towards conservative bias. More research is needed to further develop how to estimate the treatment effect for a treatment policy strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kyt_vip完成签到,获得积分10
2秒前
果酱完成签到,获得积分10
5秒前
十三应助陈秋采纳,获得10
12秒前
领导范儿应助署丽盼采纳,获得20
12秒前
微熏的羊完成签到,获得积分10
14秒前
14秒前
Perrylin718完成签到,获得积分10
18秒前
21秒前
求知的周完成签到,获得积分10
22秒前
懦弱的如蓉完成签到 ,获得积分10
24秒前
荧惑完成签到,获得积分10
25秒前
笨笨千亦完成签到 ,获得积分10
25秒前
署丽盼发布了新的文献求助20
28秒前
alan完成签到 ,获得积分0
28秒前
落霞与孤鹜齐飞完成签到,获得积分10
30秒前
ommphey完成签到 ,获得积分10
30秒前
rofsc完成签到 ,获得积分10
31秒前
小宝完成签到,获得积分10
31秒前
33秒前
微熏的羊发布了新的文献求助10
38秒前
Emperor完成签到 ,获得积分0
39秒前
冷傲凝琴完成签到,获得积分10
47秒前
天天哥哥完成签到 ,获得积分10
48秒前
传奇3应助武穆杰采纳,获得10
50秒前
深情安青应助武穆杰采纳,获得10
50秒前
脑洞疼应助武穆杰采纳,获得10
50秒前
难过的谷芹应助武穆杰采纳,获得10
50秒前
科研通AI2S应助武穆杰采纳,获得30
50秒前
53秒前
bubuyier完成签到 ,获得积分10
58秒前
ESC惠子子子子子完成签到 ,获得积分10
1分钟前
崔康佳完成签到,获得积分10
1分钟前
陈秋完成签到,获得积分10
1分钟前
超帅的又槐完成签到,获得积分10
1分钟前
hi_traffic完成签到,获得积分10
1分钟前
青春完成签到,获得积分10
1分钟前
1分钟前
shyxia完成签到 ,获得积分10
1分钟前
Yy完成签到 ,获得积分10
1分钟前
Vanni发布了新的文献求助30
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5315200
求助须知:如何正确求助?哪些是违规求助? 4457851
关于积分的说明 13868384
捐赠科研通 4347405
什么是DOI,文献DOI怎么找? 2387759
邀请新用户注册赠送积分活动 1381862
关于科研通互助平台的介绍 1351115