亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning-based prediction of vitamin D deficiency: NHANES 2001-2018

维生素D缺乏 医学 背景(考古学) 计算器 人口 维生素D与神经学 全国健康与营养检查调查 老年学 机器学习 人工智能 计算机科学 内科学 环境卫生 地理 操作系统 考古
作者
Jiale Guo,Qionghan He,Yehai Li
出处
期刊:Frontiers in Endocrinology [Frontiers Media SA]
卷期号:15 被引量:1
标识
DOI:10.3389/fendo.2024.1327058
摘要

Background Vitamin D deficiency is strongly associated with the development of several diseases. In the current context of a global pandemic of vitamin D deficiency, it is critical to identify people at high risk of vitamin D deficiency. There are no prediction tools for predicting the risk of vitamin D deficiency in the general community population, and this study aims to use machine learning to predict the risk of vitamin D deficiency using data that can be obtained through simple interviews in the community. Methods The National Health and Nutrition Examination Survey 2001-2018 dataset is used for the analysis which is randomly divided into training and validation sets in the ratio of 70:30. GBM, LR, NNet, RF, SVM, XGBoost methods are used to construct the models and their performance is evaluated. The best performed model was interpreted using the SHAP value and further development of the online web calculator. Results There were 62,919 participants enrolled in the study, and all participants included in the study were 2 years old and above, of which 20,204 (32.1%) participants had vitamin D deficiency. The models constructed by each method were evaluated using AUC as the primary evaluation statistic and ACC, PPV, NPV, SEN, SPE, F1 score, MCC, Kappa, and Brier score as secondary evaluation statistics. Finally, the XGBoost-based model has the best and near-perfect performance. The summary plot of SHAP values shows that the top three important features for this model are race, age, and BMI. An online web calculator based on this model can easily and quickly predict the risk of vitamin D deficiency. Conclusion In this study, the XGBoost-based prediction tool performs flawlessly and is highly accurate in predicting the risk of vitamin D deficiency in community populations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助Zephyr采纳,获得30
16秒前
1分钟前
hhhhhhhhhh完成签到 ,获得积分10
1分钟前
小巧的柏柳完成签到 ,获得积分10
2分钟前
Setlla完成签到 ,获得积分10
2分钟前
Aries完成签到 ,获得积分10
2分钟前
研友_VZG7GZ应助lik采纳,获得10
2分钟前
Zephyr发布了新的文献求助30
2分钟前
3分钟前
3分钟前
小巫发布了新的文献求助10
3分钟前
3分钟前
zz发布了新的文献求助10
3分钟前
zz完成签到,获得积分10
3分钟前
重生之我怎么变院士了完成签到 ,获得积分10
3分钟前
3分钟前
fleeper发布了新的文献求助10
3分钟前
共享精神应助wenwen采纳,获得10
4分钟前
4分钟前
科目三应助Jason采纳,获得10
4分钟前
Zephyr完成签到,获得积分10
4分钟前
Zephyr发布了新的文献求助10
5分钟前
曲夜白完成签到 ,获得积分10
5分钟前
5分钟前
wenwen发布了新的文献求助10
5分钟前
程翠丝完成签到,获得积分10
6分钟前
6分钟前
小巫发布了新的文献求助10
6分钟前
科研通AI2S应助啊呜采纳,获得10
6分钟前
LYN-66完成签到 ,获得积分20
6分钟前
6分钟前
啊呜发布了新的文献求助10
6分钟前
Lucas应助Zephyr采纳,获得30
7分钟前
7分钟前
Benhnhk21完成签到,获得积分10
7分钟前
去去去去发布了新的文献求助10
7分钟前
7分钟前
Zephyr发布了新的文献求助30
7分钟前
情怀应助科研通管家采纳,获得10
7分钟前
gszy1975完成签到,获得积分10
8分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139600
求助须知:如何正确求助?哪些是违规求助? 2790479
关于积分的说明 7795340
捐赠科研通 2446926
什么是DOI,文献DOI怎么找? 1301511
科研通“疑难数据库(出版商)”最低求助积分说明 626259
版权声明 601176