Sustainable Smart Cities through Multi-Agent Reinforcement Learning-Based Cooperative Autonomous Vehicles

强化学习 计算机科学 钢筋 业务 运输工程 工程类 人工智能 结构工程
作者
Ali Louati,Hassen Louati,Elham Kariri,Wafa Neifar,Mohamed Khalafalla Hassan,Mutaz H. H. Khairi,Mohammed A. Farahat,Heba M. El‐Hoseny
出处
期刊:Sustainability [Multidisciplinary Digital Publishing Institute]
卷期号:16 (5): 1779-1779 被引量:7
标识
DOI:10.3390/su16051779
摘要

As urban centers evolve into smart cities, sustainable mobility emerges as a cornerstone for ensuring environmental integrity and enhancing quality of life. Autonomous vehicles (AVs) play a pivotal role in this transformation, with the potential to significantly improve efficiency and safety, and reduce environmental impacts. This study introduces a novel Multi-Agent Actor–Critic (MA2C) algorithm tailored for multi-AV lane-changing in mixed-traffic scenarios, a critical component of intelligent transportation systems in smart cities. By incorporating a local reward system that values efficiency, safety, and passenger comfort, and a parameter-sharing scheme that encourages inter-agent collaboration, our MA2C algorithm presents a comprehensive approach to urban traffic management. The MA2C algorithm leverages reinforcement learning to optimize lane-changing decisions, ensuring optimal traffic flow and enhancing both environmental sustainability and urban living standards. The actor–critic architecture is refined to minimize variances in urban traffic conditions, enhancing predictability and safety. The study extends to simulating realistic human-driven vehicle (HDV) behavior using the Intelligent Driver Model (IDM) and the model of Minimizing Overall Braking Induced by Lane changes (MOBIL), contributing to more accurate and effective traffic management strategies. Empirical results indicate that the MA2C algorithm outperforms existing state-of-the-art models in managing lane changes, passenger comfort, and inter-vehicle cooperation, essential for the dynamic environment of smart cities. The success of the MA2C algorithm in facilitating seamless interaction between AVs and HDVs holds promise for more fluid urban traffic conditions, reduced congestion, and lower emissions. This research contributes to the growing body of knowledge on autonomous driving within the framework of sustainable smart cities, focusing on the integration of AVs into the urban fabric. It underscores the potential of machine learning and artificial intelligence in developing transportation systems that are not only efficient and safe but also sustainable, supporting the broader goals of creating resilient, adaptive, and environmentally friendly urban spaces.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
那种完成签到,获得积分10
2秒前
3秒前
AKi233发布了新的文献求助10
4秒前
6秒前
crystal完成签到 ,获得积分10
14秒前
AKi233完成签到,获得积分10
21秒前
guishouyu完成签到 ,获得积分10
23秒前
欧阳发布了新的文献求助10
23秒前
ramsey33完成签到 ,获得积分10
23秒前
dream完成签到 ,获得积分10
26秒前
31秒前
zhangpeipei完成签到,获得积分10
32秒前
欧阳完成签到,获得积分10
32秒前
股价发布了新的文献求助10
35秒前
玩命做研究完成签到 ,获得积分10
42秒前
45秒前
路漫漫其修远兮完成签到 ,获得积分10
47秒前
48秒前
123456完成签到,获得积分10
55秒前
123456发布了新的文献求助10
59秒前
清脆愫完成签到 ,获得积分10
1分钟前
1分钟前
Onetwothree完成签到 ,获得积分10
1分钟前
左丘映易完成签到,获得积分0
1分钟前
XU博士完成签到,获得积分10
1分钟前
林药师完成签到,获得积分10
1分钟前
逢场作戱__完成签到 ,获得积分10
1分钟前
想睡觉的小笼包完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
研友_ZGR70n完成签到 ,获得积分10
2分钟前
2分钟前
科研通AI5应助股价采纳,获得10
2分钟前
desperado完成签到 ,获得积分10
2分钟前
伊笙完成签到 ,获得积分10
2分钟前
crown发布了新的文献求助10
2分钟前
Helu完成签到 ,获得积分10
2分钟前
默11完成签到 ,获得积分10
2分钟前
jun完成签到,获得积分10
2分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965729
求助须知:如何正确求助?哪些是违规求助? 3510977
关于积分的说明 11155814
捐赠科研通 3245466
什么是DOI,文献DOI怎么找? 1792981
邀请新用户注册赠送积分活动 874201
科研通“疑难数据库(出版商)”最低求助积分说明 804247