Sustainable Smart Cities through Multi-Agent Reinforcement Learning-Based Cooperative Autonomous Vehicles

强化学习 计算机科学 钢筋 业务 运输工程 工程类 人工智能 结构工程
作者
Ali Louati,Hassen Louati,Elham Kariri,Wafa Neifar,Mohamed Khalafalla Hassan,Mutaz H. H. Khairi,Mohammed A. Farahat,Heba M. El‐Hoseny
出处
期刊:Sustainability [MDPI AG]
卷期号:16 (5): 1779-1779 被引量:7
标识
DOI:10.3390/su16051779
摘要

As urban centers evolve into smart cities, sustainable mobility emerges as a cornerstone for ensuring environmental integrity and enhancing quality of life. Autonomous vehicles (AVs) play a pivotal role in this transformation, with the potential to significantly improve efficiency and safety, and reduce environmental impacts. This study introduces a novel Multi-Agent Actor–Critic (MA2C) algorithm tailored for multi-AV lane-changing in mixed-traffic scenarios, a critical component of intelligent transportation systems in smart cities. By incorporating a local reward system that values efficiency, safety, and passenger comfort, and a parameter-sharing scheme that encourages inter-agent collaboration, our MA2C algorithm presents a comprehensive approach to urban traffic management. The MA2C algorithm leverages reinforcement learning to optimize lane-changing decisions, ensuring optimal traffic flow and enhancing both environmental sustainability and urban living standards. The actor–critic architecture is refined to minimize variances in urban traffic conditions, enhancing predictability and safety. The study extends to simulating realistic human-driven vehicle (HDV) behavior using the Intelligent Driver Model (IDM) and the model of Minimizing Overall Braking Induced by Lane changes (MOBIL), contributing to more accurate and effective traffic management strategies. Empirical results indicate that the MA2C algorithm outperforms existing state-of-the-art models in managing lane changes, passenger comfort, and inter-vehicle cooperation, essential for the dynamic environment of smart cities. The success of the MA2C algorithm in facilitating seamless interaction between AVs and HDVs holds promise for more fluid urban traffic conditions, reduced congestion, and lower emissions. This research contributes to the growing body of knowledge on autonomous driving within the framework of sustainable smart cities, focusing on the integration of AVs into the urban fabric. It underscores the potential of machine learning and artificial intelligence in developing transportation systems that are not only efficient and safe but also sustainable, supporting the broader goals of creating resilient, adaptive, and environmentally friendly urban spaces.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
一只大憨憨猫完成签到,获得积分10
刚刚
1秒前
所所应助星星采纳,获得10
1秒前
1秒前
答辩完成签到,获得积分10
2秒前
2秒前
4秒前
4秒前
4秒前
Yippee完成签到 ,获得积分10
5秒前
123456777完成签到 ,获得积分10
5秒前
5秒前
timo完成签到,获得积分10
5秒前
浩浩浩完成签到,获得积分10
6秒前
張肉肉关注了科研通微信公众号
6秒前
额E完成签到,获得积分20
7秒前
7秒前
坐井观天的蛙完成签到 ,获得积分10
7秒前
7秒前
云海完成签到,获得积分10
7秒前
8秒前
天天快乐应助ste11ar采纳,获得10
9秒前
耍酷的斩发布了新的文献求助10
10秒前
额E发布了新的文献求助10
11秒前
ssss完成签到 ,获得积分10
11秒前
Okayoooooo发布了新的文献求助20
12秒前
丽丽完成签到 ,获得积分10
13秒前
淡漠完成签到 ,获得积分10
14秒前
PSL发布了新的文献求助10
14秒前
14秒前
强健的绮琴完成签到,获得积分10
14秒前
嗷嗷嗷完成签到 ,获得积分10
14秒前
16秒前
16秒前
雷雷完成签到,获得积分10
16秒前
17秒前
充电宝应助冷酷的新梅采纳,获得10
17秒前
anitamui发布了新的文献求助10
18秒前
18秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165183
求助须知:如何正确求助?哪些是违规求助? 2816164
关于积分的说明 7911772
捐赠科研通 2475878
什么是DOI,文献DOI怎么找? 1318401
科研通“疑难数据库(出版商)”最低求助积分说明 632143
版权声明 602388