Sustainable Smart Cities through Multi-Agent Reinforcement Learning-Based Cooperative Autonomous Vehicles

强化学习 计算机科学 钢筋 业务 运输工程 工程类 人工智能 结构工程
作者
Ali Louati,Hassen Louati,Elham Kariri,Wafa Neifar,Mohamed Khalafalla Hassan,Mutaz H. H. Khairi,Mohammed A. Farahat,Heba M. El‐Hoseny
出处
期刊:Sustainability [MDPI AG]
卷期号:16 (5): 1779-1779 被引量:7
标识
DOI:10.3390/su16051779
摘要

As urban centers evolve into smart cities, sustainable mobility emerges as a cornerstone for ensuring environmental integrity and enhancing quality of life. Autonomous vehicles (AVs) play a pivotal role in this transformation, with the potential to significantly improve efficiency and safety, and reduce environmental impacts. This study introduces a novel Multi-Agent Actor–Critic (MA2C) algorithm tailored for multi-AV lane-changing in mixed-traffic scenarios, a critical component of intelligent transportation systems in smart cities. By incorporating a local reward system that values efficiency, safety, and passenger comfort, and a parameter-sharing scheme that encourages inter-agent collaboration, our MA2C algorithm presents a comprehensive approach to urban traffic management. The MA2C algorithm leverages reinforcement learning to optimize lane-changing decisions, ensuring optimal traffic flow and enhancing both environmental sustainability and urban living standards. The actor–critic architecture is refined to minimize variances in urban traffic conditions, enhancing predictability and safety. The study extends to simulating realistic human-driven vehicle (HDV) behavior using the Intelligent Driver Model (IDM) and the model of Minimizing Overall Braking Induced by Lane changes (MOBIL), contributing to more accurate and effective traffic management strategies. Empirical results indicate that the MA2C algorithm outperforms existing state-of-the-art models in managing lane changes, passenger comfort, and inter-vehicle cooperation, essential for the dynamic environment of smart cities. The success of the MA2C algorithm in facilitating seamless interaction between AVs and HDVs holds promise for more fluid urban traffic conditions, reduced congestion, and lower emissions. This research contributes to the growing body of knowledge on autonomous driving within the framework of sustainable smart cities, focusing on the integration of AVs into the urban fabric. It underscores the potential of machine learning and artificial intelligence in developing transportation systems that are not only efficient and safe but also sustainable, supporting the broader goals of creating resilient, adaptive, and environmentally friendly urban spaces.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
龟龟发布了新的文献求助10
1秒前
even应助文件撤销了驳回
2秒前
osneiogn完成签到,获得积分10
2秒前
2秒前
爱吃饼干的土拨鼠完成签到,获得积分10
2秒前
2秒前
VC发布了新的文献求助10
3秒前
香蕉觅云应助温暖的鸿采纳,获得10
3秒前
3秒前
3秒前
3秒前
4秒前
甜美静白完成签到,获得积分10
4秒前
4秒前
研友_VZG7GZ应助Savannah采纳,获得10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
bling完成签到,获得积分20
5秒前
迷人书蝶发布了新的文献求助10
5秒前
xdd发布了新的文献求助10
5秒前
蜗牛完成签到,获得积分10
5秒前
5秒前
5秒前
开心尔芙发布了新的文献求助10
5秒前
xialuoke完成签到,获得积分10
6秒前
1700360436完成签到,获得积分10
6秒前
6秒前
菠菜应助拼搏的小白采纳,获得100
6秒前
myh完成签到,获得积分10
6秒前
wjn完成签到,获得积分10
6秒前
6秒前
九十发布了新的文献求助10
6秒前
共享精神应助昼夜本色采纳,获得10
6秒前
Guo发布了新的文献求助10
6秒前
xxxxxx完成签到,获得积分10
7秒前
静默向上发布了新的文献求助10
7秒前
7秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719050
求助须知:如何正确求助?哪些是违规求助? 5254852
关于积分的说明 15287660
捐赠科研通 4869006
什么是DOI,文献DOI怎么找? 2614559
邀请新用户注册赠送积分活动 1564435
关于科研通互助平台的介绍 1521807