Cell-free DNA methylation reveals cell-specific tissue injury and correlates with disease severity and patient outcomes in COVID-19

DNA甲基化 甲基化 差异甲基化区 免疫系统 表观遗传学 医学 疾病 免疫学 生物 内科学 肿瘤科 生物信息学 基因 基因表达 遗传学
作者
Yuanyuan Li,Mingming Yuan,Yuanyuan Li,Shan Li,Jing-Dong Wang,Yufei Wang,Qian Li,Jun Li,Rongrong Chen,Jinmin Peng,Bin Du
出处
期刊:Clinical Epigenetics [Springer Nature]
卷期号:16 (1) 被引量:2
标识
DOI:10.1186/s13148-024-01645-7
摘要

Abstract Background The recently identified methylation patterns specific to cell type allows the tracing of cell death dynamics at the cellular level in health and diseases. This study used COVID-19 as a disease model to investigate the efficacy of cell-specific cell-free DNA (cfDNA) methylation markers in reflecting or predicting disease severity or outcome. Methods Whole genome methylation sequencing of cfDNA was performed for 20 healthy individuals, 20 cases with non-hospitalized COVID-19 and 12 cases with severe COVID-19 admitted to intensive care unit (ICU). Differentially methylated regions (DMRs) and gene ontology pathway enrichment analyses were performed to explore the locus-specific methylation difference between cohorts. The proportion of cfDNA derived from lung and immune cells to a given sample (i.e. tissue fraction) at cell-type resolution was estimated using a novel algorithm, which reflects lung injuries and immune response in COVID-19 patients and was further used to evaluate clinical severity and patient outcome. Results COVID‑19 patients had globally reduced cfDNA methylation level compared with healthy controls. Compared with non-hospitalized COVID-19 patients, the cfDNA methylation pattern was significantly altered in severe patients with the identification of 11,156 DMRs, which were mainly enriched in pathways related to immune response. Markedly elevated levels of cfDNA derived from lung and more specifically alveolar epithelial cells, bronchial epithelial cells, and lung endothelial cells were observed in COVID-19 patients compared with healthy controls. Compared with non-hospitalized patients or healthy controls, severe COVID-19 had significantly higher cfDNA derived from B cells, T cells and granulocytes and lower cfDNA from natural killer cells. Moreover, cfDNA derived from alveolar epithelial cells had the optimal performance to differentiate COVID-19 with different severities, lung injury levels, SOFA scores and in-hospital deaths, with the area under the receiver operating characteristic curve of 0.958, 0.941, 0.919 and 0.955, respectively. Conclusion Severe COVID-19 has a distinct cfDNA methylation signature compared with non-hospitalized COVID-19 and healthy controls. Cell type-specific cfDNA methylation signature enables the tracing of COVID-19 related cell deaths in lung and immune cells at cell-type resolution, which is correlated with clinical severities and outcomes, and has extensive application prospects to evaluate tissue injuries in diseases with multi-organ dysfunction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
顺利秋灵发布了新的文献求助10
刚刚
记得笑完成签到,获得积分10
1秒前
1秒前
finger完成签到,获得积分10
1秒前
XHM完成签到,获得积分10
2秒前
2秒前
qphys完成签到,获得积分0
2秒前
3秒前
3秒前
Owen应助李平采纳,获得10
4秒前
上官若男应助hyt采纳,获得10
4秒前
4秒前
调皮的晓凡完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
踏实的语山完成签到 ,获得积分10
5秒前
英吉利25发布了新的文献求助10
5秒前
大模型应助科研锐采纳,获得10
5秒前
飘逸太英发布了新的文献求助10
6秒前
6秒前
Oscillator发布了新的文献求助10
7秒前
7秒前
Criminology34应助陈小明采纳,获得10
7秒前
草帽完成签到,获得积分10
8秒前
安琪发布了新的文献求助10
8秒前
负责玉米发布了新的文献求助30
9秒前
ronll发布了新的文献求助10
10秒前
七里海完成签到,获得积分10
11秒前
科研通AI6应助安妮采纳,获得10
11秒前
芝士椰果发布了新的文献求助10
11秒前
记得笑发布了新的文献求助10
12秒前
帅帅完成签到,获得积分10
12秒前
甜蜜的大象完成签到 ,获得积分10
12秒前
风清扬发布了新的文献求助10
12秒前
12秒前
13秒前
顺利秋灵完成签到,获得积分20
14秒前
14秒前
LZS完成签到,获得积分10
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695307
求助须知:如何正确求助?哪些是违规求助? 5101268
关于积分的说明 15215811
捐赠科研通 4851665
什么是DOI,文献DOI怎么找? 2602640
邀请新用户注册赠送积分活动 1554296
关于科研通互助平台的介绍 1512277