Cell-free DNA methylation reveals cell-specific tissue injury and correlates with disease severity and patient outcomes in COVID-19

DNA甲基化 甲基化 差异甲基化区 免疫系统 表观遗传学 医学 疾病 免疫学 生物 内科学 肿瘤科 生物信息学 基因 基因表达 遗传学
作者
Yuanyuan Li,Mingming Yuan,Yuanyuan Li,Shan Li,Jing-Dong Wang,Yufei Wang,Qian Li,Jun Li,Rongrong Chen,Jinmin Peng,Bin Du
出处
期刊:Clinical Epigenetics [Springer Nature]
卷期号:16 (1) 被引量:2
标识
DOI:10.1186/s13148-024-01645-7
摘要

Abstract Background The recently identified methylation patterns specific to cell type allows the tracing of cell death dynamics at the cellular level in health and diseases. This study used COVID-19 as a disease model to investigate the efficacy of cell-specific cell-free DNA (cfDNA) methylation markers in reflecting or predicting disease severity or outcome. Methods Whole genome methylation sequencing of cfDNA was performed for 20 healthy individuals, 20 cases with non-hospitalized COVID-19 and 12 cases with severe COVID-19 admitted to intensive care unit (ICU). Differentially methylated regions (DMRs) and gene ontology pathway enrichment analyses were performed to explore the locus-specific methylation difference between cohorts. The proportion of cfDNA derived from lung and immune cells to a given sample (i.e. tissue fraction) at cell-type resolution was estimated using a novel algorithm, which reflects lung injuries and immune response in COVID-19 patients and was further used to evaluate clinical severity and patient outcome. Results COVID‑19 patients had globally reduced cfDNA methylation level compared with healthy controls. Compared with non-hospitalized COVID-19 patients, the cfDNA methylation pattern was significantly altered in severe patients with the identification of 11,156 DMRs, which were mainly enriched in pathways related to immune response. Markedly elevated levels of cfDNA derived from lung and more specifically alveolar epithelial cells, bronchial epithelial cells, and lung endothelial cells were observed in COVID-19 patients compared with healthy controls. Compared with non-hospitalized patients or healthy controls, severe COVID-19 had significantly higher cfDNA derived from B cells, T cells and granulocytes and lower cfDNA from natural killer cells. Moreover, cfDNA derived from alveolar epithelial cells had the optimal performance to differentiate COVID-19 with different severities, lung injury levels, SOFA scores and in-hospital deaths, with the area under the receiver operating characteristic curve of 0.958, 0.941, 0.919 and 0.955, respectively. Conclusion Severe COVID-19 has a distinct cfDNA methylation signature compared with non-hospitalized COVID-19 and healthy controls. Cell type-specific cfDNA methylation signature enables the tracing of COVID-19 related cell deaths in lung and immune cells at cell-type resolution, which is correlated with clinical severities and outcomes, and has extensive application prospects to evaluate tissue injuries in diseases with multi-organ dysfunction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优雅的夏旋完成签到,获得积分10
1秒前
1秒前
1秒前
风筝发布了新的文献求助10
1秒前
2秒前
杰果完成签到,获得积分10
2秒前
郭莹莹发布了新的文献求助10
2秒前
凸0皿0凸完成签到,获得积分10
3秒前
3秒前
3秒前
花Cheung完成签到,获得积分10
4秒前
5秒前
清风发布了新的文献求助10
6秒前
Moonlight发布了新的文献求助10
6秒前
Liuying2809完成签到,获得积分10
7秒前
刻苦小鸭子完成签到,获得积分10
8秒前
如忆婧年发布了新的文献求助10
8秒前
爱笑灵雁发布了新的文献求助10
9秒前
大媛大靳吃地瓜完成签到,获得积分10
9秒前
9秒前
10秒前
暴走乄完成签到,获得积分10
10秒前
Sunny完成签到 ,获得积分10
11秒前
专注严青发布了新的文献求助10
12秒前
领导范儿应助爱笑灵雁采纳,获得10
13秒前
暴走乄发布了新的文献求助10
13秒前
英俊的铭应助123采纳,获得10
13秒前
小雯钱来完成签到 ,获得积分10
13秒前
细腻戒指完成签到,获得积分10
13秒前
13秒前
NAFLD完成签到,获得积分20
14秒前
14秒前
华仔应助lyy采纳,获得10
14秒前
14秒前
星辰大海应助王千鹤采纳,获得10
15秒前
熊大完成签到,获得积分10
15秒前
木句木己发布了新的文献求助20
15秒前
袅袅发布了新的文献求助10
16秒前
小黎加油冲冲冲完成签到 ,获得积分10
16秒前
水123发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603799
求助须知:如何正确求助?哪些是违规求助? 4688754
关于积分的说明 14855835
捐赠科研通 4695101
什么是DOI,文献DOI怎么找? 2540987
邀请新用户注册赠送积分活动 1507143
关于科研通互助平台的介绍 1471814