Feature Super-Resolution Fusion with Cross-Scale Distillation for Small Object Detection in Optical Remote Sensing Images

人工智能 计算机科学 目标检测 特征(语言学) 计算机视觉 比例(比率) 特征提取 图像分辨率 遥感 图像融合 模式识别(心理学) 融合 分辨率(逻辑) 对象(语法) 蒸馏 图像(数学) 地质学 物理 化学 哲学 有机化学 量子力学 语言学
作者
Yunxiao Gao,Yongcheng Wang,Yuxi Zhang,Zheng Li,Chi Chen,Hao Feng
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:21: 1-5 被引量:5
标识
DOI:10.1109/lgrs.2024.3372500
摘要

Recently, remote sensing image object detection based on convolutional neural networks (CNNs) has made significant advancements. However, small objects detection remains a major challenge in this field. Because the small size of the object makes it difficult to extract their features and these features are further weakened after downsampling in the network. In order to improve the detection accuracy of small objects in remote sensing images, this letter provides a feature super-resolution fusion framework based on cross-scale distillation. Specifically, we design a sub-pixel super-resolution feature pyramid network (SSRFPN) replacing the bilinear interpolation with sub-pixel super-resolution (SSR) modules to enhance the feature expression capability. Furthermore, we propose a cross-scale distillation (CSD) mechanism to guide the SSR modules in learning the features of small object regions more accurately. Finally, our method is applied to three detectors on two datasets for validation. We adopt YOLOv7 as the baseline model and achieve the best results, with the average precision at a threshold of 0.5 (AP0.5) of 95.0% and 82.3% on the NWPU VHR-10 dateset and DIOR dataset. And the mean average precision of small objects (mAPS) is improved by 8.5% and 2.5%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
oyyy完成签到,获得积分10
刚刚
1秒前
研友_8yPrqZ完成签到,获得积分10
2秒前
2秒前
李雅倩发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助150
3秒前
Noah完成签到 ,获得积分0
3秒前
乐乐应助笨笨丹烟采纳,获得10
3秒前
科研通AI5应助刘淼采纳,获得10
3秒前
hhh发布了新的文献求助10
3秒前
4秒前
calico发布了新的文献求助10
4秒前
4秒前
甜甜的采蓝完成签到,获得积分10
5秒前
祁i完成签到 ,获得积分10
5秒前
xiao完成签到 ,获得积分10
6秒前
海豚的盆友完成签到,获得积分10
6秒前
bkagyin应助133采纳,获得10
6秒前
此晴可待发布了新的文献求助10
6秒前
稳重完成签到 ,获得积分10
6秒前
科研饼发布了新的文献求助10
6秒前
Samming完成签到,获得积分10
6秒前
陈晨完成签到,获得积分10
7秒前
领导范儿应助Mine采纳,获得10
7秒前
7秒前
Stride完成签到 ,获得积分10
8秒前
十一发布了新的文献求助10
9秒前
9秒前
反向大笨钟完成签到,获得积分10
9秒前
9秒前
莲意峨眉峰完成签到,获得积分10
9秒前
CC完成签到 ,获得积分10
9秒前
传奇3应助叶叶叶叶采纳,获得10
9秒前
10秒前
英姑应助dsv采纳,获得10
10秒前
千寒完成签到,获得积分10
10秒前
斯文败类应助zss采纳,获得10
10秒前
10秒前
10秒前
11秒前
高分求助中
Comprehensive Toxicology Fourth Edition 2026 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5107908
求助须知:如何正确求助?哪些是违规求助? 4317082
关于积分的说明 13449534
捐赠科研通 4146329
什么是DOI,文献DOI怎么找? 2272097
邀请新用户注册赠送积分活动 1274455
关于科研通互助平台的介绍 1212408