Feature Super-Resolution Fusion with Cross-Scale Distillation for Small Object Detection in Optical Remote Sensing Images

人工智能 计算机科学 目标检测 特征(语言学) 计算机视觉 比例(比率) 特征提取 图像分辨率 遥感 图像融合 模式识别(心理学) 融合 分辨率(逻辑) 对象(语法) 蒸馏 图像(数学) 地质学 物理 化学 哲学 有机化学 量子力学 语言学
作者
Yunxiao Gao,Yongcheng Wang,Yuxi Zhang,Zheng Li,Chi Chen,Hao Feng
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:21: 1-5 被引量:2
标识
DOI:10.1109/lgrs.2024.3372500
摘要

Recently, remote sensing image object detection based on convolutional neural networks (CNNs) has made significant advancements. However, small objects detection remains a major challenge in this field. Because the small size of the object makes it difficult to extract their features and these features are further weakened after downsampling in the network. In order to improve the detection accuracy of small objects in remote sensing images, this letter provides a feature super-resolution fusion framework based on cross-scale distillation. Specifically, we design a sub-pixel super-resolution feature pyramid network (SSRFPN) replacing the bilinear interpolation with sub-pixel super-resolution (SSR) modules to enhance the feature expression capability. Furthermore, we propose a cross-scale distillation (CSD) mechanism to guide the SSR modules in learning the features of small object regions more accurately. Finally, our method is applied to three detectors on two datasets for validation. We adopt YOLOv7 as the baseline model and achieve the best results, with the average precision at a threshold of 0.5 (AP0.5) of 95.0% and 82.3% on the NWPU VHR-10 dateset and DIOR dataset. And the mean average precision of small objects (mAPS) is improved by 8.5% and 2.5%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橘猫爱笑完成签到 ,获得积分10
刚刚
李佳倩完成签到 ,获得积分10
1秒前
1秒前
东单的单车完成签到,获得积分10
2秒前
乐白发布了新的文献求助10
2秒前
贪玩的醉柳关注了科研通微信公众号
3秒前
俊逸凌雪完成签到,获得积分10
3秒前
苹果煎蛋发布了新的文献求助10
4秒前
HXY完成签到,获得积分20
4秒前
三木完成签到,获得积分10
4秒前
英姑应助leo采纳,获得10
4秒前
6秒前
6秒前
6秒前
8秒前
cc4ever完成签到,获得积分10
8秒前
眯眯眼的访冬完成签到 ,获得积分10
9秒前
10秒前
hhh发布了新的文献求助10
10秒前
贾世冰发布了新的文献求助10
11秒前
赘婿应助乐白采纳,获得10
11秒前
从容慕青发布了新的文献求助10
11秒前
12秒前
学术版7e发布了新的文献求助30
13秒前
14秒前
14秒前
科研通AI5应助zhy采纳,获得30
15秒前
SciGPT应助冬夜渐暖采纳,获得10
16秒前
CT完成签到,获得积分10
16秒前
小猪发布了新的文献求助30
16秒前
Lucas应助西西采纳,获得10
16秒前
17秒前
Ava应助NSstupid采纳,获得10
17秒前
Lishumin发布了新的文献求助10
18秒前
18秒前
科研通AI6应助贾世冰采纳,获得10
19秒前
lele发布了新的文献求助10
19秒前
xzy998应助vw11采纳,获得10
20秒前
hong完成签到,获得积分10
20秒前
果子爱学习完成签到 ,获得积分10
20秒前
高分求助中
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4548351
求助须知:如何正确求助?哪些是违规求助? 3979162
关于积分的说明 12320490
捐赠科研通 3647724
什么是DOI,文献DOI怎么找? 2008929
邀请新用户注册赠送积分活动 1044359
科研通“疑难数据库(出版商)”最低求助积分说明 932972