亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Feature Super-Resolution Fusion with Cross-Scale Distillation for Small Object Detection in Optical Remote Sensing Images

人工智能 计算机科学 目标检测 特征(语言学) 计算机视觉 比例(比率) 特征提取 图像分辨率 遥感 图像融合 模式识别(心理学) 融合 分辨率(逻辑) 对象(语法) 蒸馏 图像(数学) 地质学 物理 化学 哲学 有机化学 量子力学 语言学
作者
Yunxiao Gao,Yongcheng Wang,Yuxi Zhang,Zheng Li,Chi Chen,Hao Feng
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:21: 1-5 被引量:5
标识
DOI:10.1109/lgrs.2024.3372500
摘要

Recently, remote sensing image object detection based on convolutional neural networks (CNNs) has made significant advancements. However, small objects detection remains a major challenge in this field. Because the small size of the object makes it difficult to extract their features and these features are further weakened after downsampling in the network. In order to improve the detection accuracy of small objects in remote sensing images, this letter provides a feature super-resolution fusion framework based on cross-scale distillation. Specifically, we design a sub-pixel super-resolution feature pyramid network (SSRFPN) replacing the bilinear interpolation with sub-pixel super-resolution (SSR) modules to enhance the feature expression capability. Furthermore, we propose a cross-scale distillation (CSD) mechanism to guide the SSR modules in learning the features of small object regions more accurately. Finally, our method is applied to three detectors on two datasets for validation. We adopt YOLOv7 as the baseline model and achieve the best results, with the average precision at a threshold of 0.5 (AP0.5) of 95.0% and 82.3% on the NWPU VHR-10 dateset and DIOR dataset. And the mean average precision of small objects (mAPS) is improved by 8.5% and 2.5%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
48秒前
碗碗发布了新的文献求助10
55秒前
Chloe应助黄康采纳,获得10
59秒前
1分钟前
Ashao完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
manh123发布了新的文献求助10
1分钟前
两袖清风完成签到 ,获得积分10
1分钟前
2分钟前
奥利奥麦旋风完成签到 ,获得积分10
3分钟前
Wang完成签到 ,获得积分20
3分钟前
情怀应助耍酷糖豆采纳,获得10
4分钟前
4分钟前
4分钟前
从容芮应助嘉心糖采纳,获得200
4分钟前
composite66完成签到,获得积分10
4分钟前
非洲大象完成签到,获得积分10
5分钟前
5分钟前
危机的妖妖完成签到,获得积分10
5分钟前
灯露完成签到,获得积分10
6分钟前
快乐的笑阳完成签到,获得积分10
6分钟前
eplision发布了新的文献求助10
6分钟前
charih完成签到 ,获得积分10
6分钟前
7分钟前
qingyu_Lin123发布了新的文献求助10
7分钟前
养花低手完成签到 ,获得积分10
7分钟前
搜集达人应助Chloe采纳,获得10
7分钟前
8分钟前
耍酷糖豆发布了新的文献求助10
8分钟前
8分钟前
8分钟前
yeda706完成签到,获得积分10
8分钟前
Chloe发布了新的文献求助10
8分钟前
8分钟前
9分钟前
晓柳柳发布了新的文献求助10
9分钟前
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
可见光通信专用集成电路及实时系统 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4880212
求助须知:如何正确求助?哪些是违规求助? 4166946
关于积分的说明 12927371
捐赠科研通 3925788
什么是DOI,文献DOI怎么找? 2154914
邀请新用户注册赠送积分活动 1172990
关于科研通互助平台的介绍 1077241