Analysis of following vehicle driver injury severity in rear-end collision on straight road based on LightGBM and SHAP

碰撞 航空学 工程类 运输工程 计算机科学 汽车工程 计算机安全
作者
Tianzheng Wei,Tong Zhu
出处
标识
DOI:10.1177/09544070241233954
摘要

Rear-end accidents, as one of the common accident types, may cause serious injuries to the driver and passengers. There are mutual coupling effects among causal features of rear-end accidents, and traditional analytical methods may lead to modeling distortion due to assumption constraints. In this study, the Light Gradient Boosting Machine (LightGBM), a machine learning algorithm, is used to model the injury severity of the following vehicle driver in a rear-end crash accident on a straight road, based on the data from the China In-depth Accident Study data. The Shapley Additive Explanations (SHAP) method was used to interpret the results of the LightGBM model and to analyze the relationship between factors and driver injury severity. The results show that location familiarity, willingness to take risks, and driving time have a significant impact on the injury severity for following vehicle drivers involved in rear-end crashes. Cloudy conditions increase a driver’s risk of being involved in a fatal or injured rear-end collision. In rain, snow, hail, and foggy conditions, have a higher propensity to cause driver fatalities in the crash event. The rear-end crash of passenger cars resulted in a higher death probability of the following vehicle driver compared to sedan and truck, and female drivers are more likely to be involved in uninjured accidents compared to males. These results are informative for preventing rear-end accidents and reducing the extent of accidental injuries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
生动的丝应助zz采纳,获得10
1秒前
2秒前
123发布了新的文献求助10
2秒前
2秒前
3秒前
5秒前
shang发布了新的文献求助10
6秒前
my发布了新的文献求助10
6秒前
能HJY发布了新的文献求助30
7秒前
善学以致用应助鱼叔采纳,获得10
7秒前
核桃发布了新的文献求助10
8秒前
9秒前
Flow3ry完成签到,获得积分10
10秒前
HugginBearOuO发布了新的文献求助10
11秒前
undertaker完成签到,获得积分10
12秒前
13秒前
大个应助欢喜烧鹅采纳,获得10
15秒前
哭泣觅儿发布了新的文献求助10
15秒前
18秒前
英俊的铭应助1111采纳,获得10
18秒前
18秒前
鱼叔发布了新的文献求助10
19秒前
小蘑菇应助结实傲蕾采纳,获得80
20秒前
HugginBearOuO完成签到,获得积分20
20秒前
my关闭了my文献求助
21秒前
21秒前
嘻嘻应助水心采纳,获得10
21秒前
23秒前
Flow3ry发布了新的文献求助10
24秒前
白云苍狗关注了科研通微信公众号
24秒前
24秒前
传奇3应助zxl采纳,获得10
24秒前
科研通AI6应助留胡子的松采纳,获得10
25秒前
Sigar完成签到 ,获得积分10
25秒前
贺雪发布了新的文献求助10
26秒前
29秒前
开朗大雁完成签到 ,获得积分10
29秒前
水心完成签到,获得积分10
30秒前
霓裳快雨完成签到 ,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5287984
求助须知:如何正确求助?哪些是违规求助? 4440026
关于积分的说明 13823687
捐赠科研通 4322271
什么是DOI,文献DOI怎么找? 2372462
邀请新用户注册赠送积分活动 1367928
关于科研通互助平台的介绍 1331548