A Novel Resource Management Framework for Blockchain-Based Federated Learning in IoT Networks

块链 计算机科学 物联网 计算机网络 万维网 计算机安全
作者
Aman Mishra,Yash Garg,Om Jee Pandey,Mahendra K. Shukla,Athanasios V. Vasilakos,Rajesh M. Hegde
出处
期刊:IEEE transactions on sustainable computing [Institute of Electrical and Electronics Engineers]
卷期号:9 (4): 648-660 被引量:1
标识
DOI:10.1109/tsusc.2024.3358915
摘要

At present, the centralized learning models, used for IoT applications generating large amount of data, face several challenges such as bandwidth scarcity, more energy consumption, increased uses of computing resources, poor connectivity, high computational complexity, reduced privacy, and large latency towards data transfer. In order to address the aforementioned challenges, Blockchain-Enabled Federated Learning Networks (BFLNs) emerged recently, which deal with trained model parameters only, rather than raw data. BFLNs provide enhanced security along with improved energy-efficiency and Quality-of-Service (QoS). However, BFLNs suffer with the challenges of exponential increased action space in deciding various parameter levels towards training and block generation. Motivated by aforementioned challenges of BFLNs, in this work, we are proposing an actor-critic Reinforcement Learning (RL) method to model the Machine Learning Model Owner (MLMO) in selecting the optimal set of parameter levels, addressing the challenges of exponential grow of action space in BFLNs. Further, due to the implicit entropy exploration, actor-critic RL method balances the exploration-exploitation trade-off and shows better performance than most off-policy methods, on large discrete action spaces. Therefore, in this work, considering the mobile scenario of the devices, MLMO decides the data and energy levels that the mobile devices use for the training and determine the block generation rate. This leads to minimized system latency and reduced overall cost, while achieving the target accuracy. Specifically, we have used Proximal Policy Optimization (PPO) as an on-policy actor-critic method with it's two variants, one based on Monte Carlo (MC) returns and another based on Generalized Advantage Estimate (GAE). We analyzed that PPO has better exploration and sample efficiency, lesser training time, and consistently higher cumulative rewards, when compared to off-policy Deep Q-Network (DQN).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文艺的初蓝完成签到 ,获得积分10
刚刚
TiAmo发布了新的文献求助10
刚刚
刘十三完成签到,获得积分10
刚刚
刚刚
犹豫忆南完成签到,获得积分10
1秒前
科研通AI5应助kingwhitewing采纳,获得10
2秒前
2秒前
mm关注了科研通微信公众号
2秒前
xieyuanxing发布了新的文献求助10
2秒前
2秒前
左然然完成签到,获得积分10
2秒前
2秒前
人福药业完成签到,获得积分10
3秒前
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
细腻晓露发布了新的文献求助10
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
3秒前
三里墩头应助科研通管家采纳,获得10
3秒前
天线宝宝应助科研通管家采纳,获得10
3秒前
wing00024完成签到,获得积分10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
3秒前
小马甲应助科研通管家采纳,获得10
4秒前
控制小弟应助科研通管家采纳,获得10
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
Leif应助科研通管家采纳,获得20
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
4秒前
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
今后应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
prosperp应助科研通管家采纳,获得10
4秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740