A Novel Resource Management Framework for Blockchain-Based Federated Learning in IoT Networks

块链 计算机科学 物联网 计算机网络 万维网 计算机安全
作者
Aman Mishra,Yash Garg,Om Jee Pandey,Mahendra K. Shukla,Athanasios V. Vasilakos,Rajesh M. Hegde
出处
期刊:IEEE transactions on sustainable computing [Institute of Electrical and Electronics Engineers]
卷期号:9 (4): 648-660 被引量:1
标识
DOI:10.1109/tsusc.2024.3358915
摘要

At present, the centralized learning models, used for IoT applications generating large amount of data, face several challenges such as bandwidth scarcity, more energy consumption, increased uses of computing resources, poor connectivity, high computational complexity, reduced privacy, and large latency towards data transfer. In order to address the aforementioned challenges, Blockchain-Enabled Federated Learning Networks (BFLNs) emerged recently, which deal with trained model parameters only, rather than raw data. BFLNs provide enhanced security along with improved energy-efficiency and Quality-of-Service (QoS). However, BFLNs suffer with the challenges of exponential increased action space in deciding various parameter levels towards training and block generation. Motivated by aforementioned challenges of BFLNs, in this work, we are proposing an actor-critic Reinforcement Learning (RL) method to model the Machine Learning Model Owner (MLMO) in selecting the optimal set of parameter levels, addressing the challenges of exponential grow of action space in BFLNs. Further, due to the implicit entropy exploration, actor-critic RL method balances the exploration-exploitation trade-off and shows better performance than most off-policy methods, on large discrete action spaces. Therefore, in this work, considering the mobile scenario of the devices, MLMO decides the data and energy levels that the mobile devices use for the training and determine the block generation rate. This leads to minimized system latency and reduced overall cost, while achieving the target accuracy. Specifically, we have used Proximal Policy Optimization (PPO) as an on-policy actor-critic method with it's two variants, one based on Monte Carlo (MC) returns and another based on Generalized Advantage Estimate (GAE). We analyzed that PPO has better exploration and sample efficiency, lesser training time, and consistently higher cumulative rewards, when compared to off-policy Deep Q-Network (DQN).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
执着秋白发布了新的文献求助10
刚刚
qmac发布了新的文献求助10
刚刚
CodeCraft应助能干的巧曼采纳,获得10
刚刚
LHW关闭了LHW文献求助
1秒前
1秒前
輝23完成签到,获得积分10
1秒前
2秒前
漂亮的松思完成签到,获得积分10
2秒前
orixero应助psychosocial采纳,获得10
2秒前
2秒前
dddy发布了新的文献求助10
2秒前
安德鲁完成签到 ,获得积分10
3秒前
3秒前
3秒前
cocolu应助风中的向卉采纳,获得20
3秒前
11发布了新的文献求助10
3秒前
知愈完成签到,获得积分10
3秒前
pluto应助一池楼台采纳,获得10
4秒前
领导范儿应助早起晚睡采纳,获得20
4秒前
Battery-Li完成签到,获得积分10
6秒前
6秒前
哈哈欢发布了新的文献求助10
6秒前
欢喜的跳跳糖完成签到,获得积分10
6秒前
7秒前
7秒前
浅笑成风发布了新的文献求助10
8秒前
8秒前
9秒前
星辰大海应助yyy采纳,获得10
9秒前
9秒前
田様应助自然白安采纳,获得10
10秒前
研友_nVqwxL发布了新的文献求助10
10秒前
10秒前
10秒前
张张张张张完成签到 ,获得积分10
11秒前
明明明完成签到,获得积分20
11秒前
12秒前
Hello应助qmac采纳,获得10
12秒前
Owen应助电催化采纳,获得10
13秒前
NexusExplorer应助朝三暮四采纳,获得10
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
錢鍾書楊絳親友書札 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3297105
求助须知:如何正确求助?哪些是违规求助? 2932642
关于积分的说明 8458124
捐赠科研通 2605306
什么是DOI,文献DOI怎么找? 1422222
科研通“疑难数据库(出版商)”最低求助积分说明 661339
邀请新用户注册赠送积分活动 644565