Artificial intelligence and corporate carbon neutrality: A qualitative exploration

中立 杠杆(统计) 分歧(语言学) 过程(计算) 趋同(经济学) 定性性质 碳中和 业务 知识管理 计算机科学 经济 人工智能 政治学 工程类 机器学习 哲学 电气工程 操作系统 可再生能源 法学 经济增长 语言学
作者
Adeel Luqman,Qingyu Zhang,Shalini Talwar,Meena Bhatia,Amandeep Dhir
出处
期刊:Business Strategy and The Environment [Wiley]
卷期号:33 (5): 3986-4003 被引量:16
标识
DOI:10.1002/bse.3689
摘要

Abstract Many firms have established formal carbon neutrality (CN) targets in response to the increasing climate risk and related regulatory requirements. Subsequently, they have implemented various measures and adopted multiple approaches to attain these goals. Academic research has given due attention to firms' efforts in this direction. However, past studies have primarily focused on non‐digital and process‐oriented approaches to achieving CN, with the potential of digital technologies such as artificial intelligence (AI) remaining less explored. Our study aims to address this gap by qualitatively examining the use of AI for pursuing CN, drawing insights from firms with prior experience in the area. We analyzed the collected qualitative data to identify four key dimensions that capture different nuances of applying AI for achieving CN: (a) implementing AI for direct and indirect control of emissions, (b) accepting the strategic trade‐offs related to funding, data and systems concerns, and social priorities, (c) overcoming organizational and human‐related impediments, and (d) acknowledging the significant impact of AI in terms of gains in business model efficiency and measurable CN target attainment, which ultimately contribute to CN. Based on our findings, we propose a convergence–divergence model encompassing the positive aspects, inhibiting factors, synergies, and offsets necessary for firms to leverage AI to achieve net‐zero emissions effectively. Overall, our study contributes to the discourse on the utilization of AI for CN in a comprehensive manner.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LLL完成签到,获得积分10
刚刚
zho发布了新的文献求助10
刚刚
冰川川完成签到,获得积分10
1秒前
冬日可爱发布了新的文献求助10
3秒前
3秒前
打打应助精明芷巧采纳,获得10
3秒前
4秒前
6秒前
7秒前
桐桐应助zzt采纳,获得10
7秒前
8秒前
陈文学完成签到,获得积分10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得30
8秒前
Rita应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
8秒前
爆米花应助科研通管家采纳,获得10
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
上官若男应助科研通管家采纳,获得10
9秒前
9秒前
猪猪hero应助科研通管家采纳,获得10
9秒前
9秒前
科研通AI2S应助黎洛洛采纳,获得10
9秒前
何aa完成签到,获得积分10
9秒前
Orange应助科研通管家采纳,获得30
9秒前
9秒前
9秒前
赘婿应助乐乐乐乐乐采纳,获得10
10秒前
qazwsxedc发布了新的文献求助10
11秒前
accept发布了新的文献求助20
11秒前
11秒前
陈文学发布了新的文献求助10
12秒前
正直的迎松完成签到,获得积分10
12秒前
哈哈哈发布了新的文献求助10
15秒前
关小乙发布了新的文献求助10
16秒前
16秒前
16秒前
16秒前
16秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
Resilience of a Nation: A History of the Military in Rwanda 888
Massenspiele, Massenbewegungen. NS-Thingspiel, Arbeiterweibespiel und olympisches Zeremoniell 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3728265
求助须知:如何正确求助?哪些是违规求助? 3273343
关于积分的说明 9981224
捐赠科研通 2988702
什么是DOI,文献DOI怎么找? 1639784
邀请新用户注册赠送积分活动 778991
科研通“疑难数据库(出版商)”最低求助积分说明 747847