已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

In silico prediction of ocular toxicity of compounds using explainable machine learning and deep learning approaches

可解释性 人工智能 机器学习 试验装置 计算机科学 深度学习 计算模型 数量结构-活动关系
作者
Yiqing Zhou,Ze Wang,Zejun Huang,Weihua Li,Yuanting Chen,Xinxin Yu,Yun Tang,Guixia Liu
出处
期刊:Journal of Applied Toxicology [Wiley]
卷期号:44 (6): 892-907 被引量:4
标识
DOI:10.1002/jat.4586
摘要

Abstract The accurate identification of chemicals with ocular toxicity is of paramount importance in health hazard assessment. In contemporary chemical toxicology, there is a growing emphasis on refining, reducing, and replacing animal testing in safety evaluations. Therefore, the development of robust computational tools is crucial for regulatory applications. The performance of predictive models is heavily reliant on the quality and quantity of data. In this investigation, we amalgamated the most extensive dataset (4901 compounds) sourced from governmental GHS‐compliant databases and literature to develop binary classification models of chemical ocular toxicity. We employed 12 molecular representations in conjunction with six machine learning algorithms and two deep learning algorithms to create a series of binary classification models. The findings indicated that the deep learning method GCN outperformed the machine learning models in cross‐validation, achieving an impressive AUC of 0.915. However, the top‐performing machine learning model (RF‐Descriptor) demonstrated excellent performance with an AUC of 0.869 on the test set and was therefore selected as the best model. To enhance model interpretability, we conducted the SHAP method and attention weights analysis. The two approaches offered visual depictions of the relevance of key descriptors and substructures in predicting ocular toxicity of chemicals. Thus, we successfully struck a delicate balance between data quality and model interpretability, rendering our model valuable for predicting and comprehending potential ocular‐toxic compounds in the early stages of drug discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
2秒前
火龙果发布了新的文献求助10
3秒前
大吧唧关注了科研通微信公众号
3秒前
完美世界应助温柔以冬采纳,获得10
4秒前
5秒前
5秒前
5秒前
5秒前
桐桐应助科研通管家采纳,获得10
6秒前
haul发布了新的文献求助10
6秒前
大模型应助科研通管家采纳,获得10
6秒前
所所应助科研通管家采纳,获得10
7秒前
ZoeyD完成签到 ,获得积分10
7秒前
8秒前
小胡萝白发布了新的文献求助30
9秒前
xy完成签到,获得积分10
9秒前
Mayday发布了新的文献求助10
11秒前
耍酷诗槐应助牛奶秋刀鱼采纳,获得10
11秒前
体贴苞络发布了新的文献求助30
12秒前
Ava应助开心的瘦子采纳,获得10
12秒前
lyy完成签到 ,获得积分10
12秒前
13秒前
15秒前
丘比特应助夜雨声烦采纳,获得10
15秒前
haul完成签到 ,获得积分10
16秒前
希望天下0贩的0应助asudent采纳,获得30
18秒前
22222发布了新的文献求助10
19秒前
19秒前
22秒前
hfnnn完成签到 ,获得积分10
23秒前
26秒前
乐乐应助duoduo采纳,获得10
26秒前
今后应助harri采纳,获得10
28秒前
发嗲的向雪完成签到,获得积分10
29秒前
A001发布了新的文献求助10
30秒前
米奇妙妙屋关注了科研通微信公众号
32秒前
33秒前
36秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994469
求助须知:如何正确求助?哪些是违规求助? 3534869
关于积分的说明 11266676
捐赠科研通 3274686
什么是DOI,文献DOI怎么找? 1806453
邀请新用户注册赠送积分活动 883298
科研通“疑难数据库(出版商)”最低求助积分说明 809749