In silico prediction of ocular toxicity of compounds using explainable machine learning and deep learning approaches

可解释性 人工智能 机器学习 试验装置 计算机科学 深度学习 计算模型 数量结构-活动关系
作者
Yiqing Zhou,Ze Wang,Zejun Huang,Weihua Li,Yuanting Chen,Xinxin Yu,Yun Tang,Guixia Liu
出处
期刊:Journal of Applied Toxicology [Wiley]
卷期号:44 (6): 892-907 被引量:4
标识
DOI:10.1002/jat.4586
摘要

Abstract The accurate identification of chemicals with ocular toxicity is of paramount importance in health hazard assessment. In contemporary chemical toxicology, there is a growing emphasis on refining, reducing, and replacing animal testing in safety evaluations. Therefore, the development of robust computational tools is crucial for regulatory applications. The performance of predictive models is heavily reliant on the quality and quantity of data. In this investigation, we amalgamated the most extensive dataset (4901 compounds) sourced from governmental GHS‐compliant databases and literature to develop binary classification models of chemical ocular toxicity. We employed 12 molecular representations in conjunction with six machine learning algorithms and two deep learning algorithms to create a series of binary classification models. The findings indicated that the deep learning method GCN outperformed the machine learning models in cross‐validation, achieving an impressive AUC of 0.915. However, the top‐performing machine learning model (RF‐Descriptor) demonstrated excellent performance with an AUC of 0.869 on the test set and was therefore selected as the best model. To enhance model interpretability, we conducted the SHAP method and attention weights analysis. The two approaches offered visual depictions of the relevance of key descriptors and substructures in predicting ocular toxicity of chemicals. Thus, we successfully struck a delicate balance between data quality and model interpretability, rendering our model valuable for predicting and comprehending potential ocular‐toxic compounds in the early stages of drug discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Camellia发布了新的文献求助10
2秒前
lyt发布了新的文献求助10
3秒前
思源应助淡淡小土豆采纳,获得20
4秒前
甜甜亦丝完成签到,获得积分20
4秒前
111发布了新的文献求助10
4秒前
William发布了新的文献求助10
4秒前
SciGPT应助5High_0采纳,获得10
5秒前
7秒前
xxx完成签到,获得积分20
7秒前
超级煎饼完成签到 ,获得积分10
8秒前
桐桐应助Z鸡汤采纳,获得20
8秒前
9秒前
tony96完成签到,获得积分20
10秒前
10秒前
ASIS发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
xuxingjie发布了新的文献求助10
12秒前
大个应助Elaine采纳,获得10
13秒前
mango发布了新的文献求助10
14秒前
研友_nEWaD8完成签到,获得积分10
15秒前
zzz完成签到,获得积分10
15秒前
sweets完成签到,获得积分10
17秒前
LL发布了新的文献求助30
17秒前
17秒前
19秒前
www完成签到,获得积分10
20秒前
21秒前
21秒前
222发布了新的文献求助10
21秒前
黄量杰成发布了新的文献求助10
22秒前
23秒前
23秒前
sansan完成签到 ,获得积分10
24秒前
manru发布了新的文献求助10
24秒前
24秒前
25秒前
ASIS完成签到,获得积分10
25秒前
刘祥发布了新的文献求助10
25秒前
虚拟的柠檬完成签到,获得积分10
26秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125100
求助须知:如何正确求助?哪些是违规求助? 4329107
关于积分的说明 13489886
捐赠科研通 4163829
什么是DOI,文献DOI怎么找? 2282591
邀请新用户注册赠送积分活动 1283707
关于科研通互助平台的介绍 1222983