亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

In silico prediction of ocular toxicity of compounds using explainable machine learning and deep learning approaches

可解释性 人工智能 机器学习 试验装置 计算机科学 深度学习 计算模型 数量结构-活动关系
作者
Yiqing Zhou,Ze Wang,Zejun Huang,Weihua Li,Yuanting Chen,Xinxin Yu,Yun Tang,Guixia Liu
出处
期刊:Journal of Applied Toxicology [Wiley]
卷期号:44 (6): 892-907 被引量:7
标识
DOI:10.1002/jat.4586
摘要

Abstract The accurate identification of chemicals with ocular toxicity is of paramount importance in health hazard assessment. In contemporary chemical toxicology, there is a growing emphasis on refining, reducing, and replacing animal testing in safety evaluations. Therefore, the development of robust computational tools is crucial for regulatory applications. The performance of predictive models is heavily reliant on the quality and quantity of data. In this investigation, we amalgamated the most extensive dataset (4901 compounds) sourced from governmental GHS‐compliant databases and literature to develop binary classification models of chemical ocular toxicity. We employed 12 molecular representations in conjunction with six machine learning algorithms and two deep learning algorithms to create a series of binary classification models. The findings indicated that the deep learning method GCN outperformed the machine learning models in cross‐validation, achieving an impressive AUC of 0.915. However, the top‐performing machine learning model (RF‐Descriptor) demonstrated excellent performance with an AUC of 0.869 on the test set and was therefore selected as the best model. To enhance model interpretability, we conducted the SHAP method and attention weights analysis. The two approaches offered visual depictions of the relevance of key descriptors and substructures in predicting ocular toxicity of chemicals. Thus, we successfully struck a delicate balance between data quality and model interpretability, rendering our model valuable for predicting and comprehending potential ocular‐toxic compounds in the early stages of drug discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YY完成签到,获得积分20
1秒前
4秒前
5秒前
李健的粉丝团团长应助YY采纳,获得10
5秒前
6秒前
9秒前
12秒前
快了科研发布了新的文献求助30
15秒前
yuuan完成签到,获得积分10
20秒前
23秒前
25秒前
快了科研完成签到,获得积分10
25秒前
27秒前
酷波er应助吴逸彪采纳,获得10
30秒前
英姑应助炙心采纳,获得10
33秒前
37秒前
38秒前
41秒前
吴逸彪发布了新的文献求助10
42秒前
mmh发布了新的文献求助10
42秒前
43秒前
46秒前
坚强煜城发布了新的文献求助10
47秒前
炙心发布了新的文献求助10
50秒前
wise111发布了新的文献求助10
50秒前
51秒前
Ava应助吴逸彪采纳,获得10
52秒前
Huayan发布了新的文献求助30
56秒前
58秒前
吴逸彪完成签到,获得积分10
1分钟前
charm完成签到,获得积分10
1分钟前
吴逸彪发布了新的文献求助10
1分钟前
柳贯一完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
YY发布了新的文献求助10
1分钟前
1分钟前
科研通AI6应助刘大力采纳,获得50
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509398
求助须知:如何正确求助?哪些是违规求助? 4604318
关于积分的说明 14489605
捐赠科研通 4539084
什么是DOI,文献DOI怎么找? 2487285
邀请新用户注册赠送积分活动 1469726
关于科研通互助平台的介绍 1441944