In silico prediction of ocular toxicity of compounds using explainable machine learning and deep learning approaches

可解释性 人工智能 机器学习 试验装置 计算机科学 深度学习 数量结构-活动关系
作者
Yiqing Zhou,Sheng Wang,Zejun Huang,Weihua Li,Yuanting Chen,Xinxin Yu,Yun Tang,Guixia Liu
出处
期刊:Journal of Applied Toxicology [Wiley]
标识
DOI:10.1002/jat.4586
摘要

Abstract The accurate identification of chemicals with ocular toxicity is of paramount importance in health hazard assessment. In contemporary chemical toxicology, there is a growing emphasis on refining, reducing, and replacing animal testing in safety evaluations. Therefore, the development of robust computational tools is crucial for regulatory applications. The performance of predictive models is heavily reliant on the quality and quantity of data. In this investigation, we amalgamated the most extensive dataset (4901 compounds) sourced from governmental GHS‐compliant databases and literature to develop binary classification models of chemical ocular toxicity. We employed 12 molecular representations in conjunction with six machine learning algorithms and two deep learning algorithms to create a series of binary classification models. The findings indicated that the deep learning method GCN outperformed the machine learning models in cross‐validation, achieving an impressive AUC of 0.915. However, the top‐performing machine learning model (RF‐Descriptor) demonstrated excellent performance with an AUC of 0.869 on the test set and was therefore selected as the best model. To enhance model interpretability, we conducted the SHAP method and attention weights analysis. The two approaches offered visual depictions of the relevance of key descriptors and substructures in predicting ocular toxicity of chemicals. Thus, we successfully struck a delicate balance between data quality and model interpretability, rendering our model valuable for predicting and comprehending potential ocular‐toxic compounds in the early stages of drug discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kimihee完成签到,获得积分10
刚刚
4秒前
4秒前
轻松雁蓉发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
jdmeme完成签到 ,获得积分10
5秒前
花开花落发布了新的文献求助10
9秒前
WQ发布了新的文献求助10
9秒前
guoguo应助lwk采纳,获得10
9秒前
无水乙醚完成签到,获得积分10
9秒前
hx完成签到,获得积分10
9秒前
Druid发布了新的文献求助10
10秒前
ding应助潇笑采纳,获得10
10秒前
冷静博超发布了新的文献求助10
15秒前
15秒前
16秒前
木筝丹青给木筝丹青的求助进行了留言
16秒前
Sudon完成签到 ,获得积分10
17秒前
flowers发布了新的文献求助10
19秒前
jry_921发布了新的文献求助10
19秒前
AAAsun完成签到,获得积分10
20秒前
Akim应助qyj采纳,获得10
20秒前
sirius完成签到,获得积分10
21秒前
潇笑发布了新的文献求助10
22秒前
hello发布了新的文献求助10
22秒前
马嘉懿完成签到 ,获得积分10
22秒前
gaoyue给gaoyue的求助进行了留言
24秒前
李纪磊完成签到,获得积分10
24秒前
25秒前
无私的朝雪完成签到 ,获得积分10
25秒前
研友完成签到,获得积分10
26秒前
36456657应助dd采纳,获得10
27秒前
英姑应助冲鸭采纳,获得30
28秒前
vivian完成签到 ,获得积分10
28秒前
flowers完成签到,获得积分20
28秒前
123456发布了新的文献求助10
29秒前
潇笑完成签到,获得积分10
29秒前
duyu完成签到 ,获得积分10
31秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Heteroatom-Doped Carbon Allotropes: Progress in Synthesis, Characterization, and Applications 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159847
求助须知:如何正确求助?哪些是违规求助? 2810808
关于积分的说明 7889521
捐赠科研通 2469910
什么是DOI,文献DOI怎么找? 1315173
科研通“疑难数据库(出版商)”最低求助积分说明 630742
版权声明 602012