Dual-3DM3AD: Mixed Transformer Based Semantic Segmentation and Triplet Pre-Processing for Early Multi-Class Alzheimer’s Diagnosis

计算机科学 人工智能 Softmax函数 模式识别(心理学) 分割 卷积神经网络
作者
Arfat Ahmad Khan,Rakesh Kumar Mahendran,P Kumar,Muhammad Faheem
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:32: 696-707 被引量:20
标识
DOI:10.1109/tnsre.2024.3357723
摘要

Alzheimer's Disease (AD) is a widespread, chronic, irreversible, and degenerative condition, and its early detection during the prodromal stage is of utmost importance. Typically, AD studies rely on single data modalities, such as MRI or PET, for making predictions. Nevertheless, combining metabolic and structural data can offer a comprehensive perspective on AD staging analysis. To address this goal, this paper introduces an innovative multi-modal fusion-based approach named as Dual-3DM 3 -AD. This model is proposed for an accurate and early Alzheimer's diagnosis by considering both MRI and PET image scans. Initially, we pre-process both images in terms of noise reduction, skull stripping and 3D image conversion using Quaternion Non-local Means Denoising Algorithm (QNLM), Morphology function and Block Divider Model (BDM), respectively, which enhances the image quality. Furthermore, we have adapted Mixed-transformer with Furthered U-Net for performing semantic segmentation and minimizing complexity. Dual-3DM 3 -AD model is consisted of multi-scale feature extraction module for extracting appropriate features from both segmented images. The extracted features are then aggregated using Densely Connected Feature Aggregator Module (DCFAM) to utilize both features. Finally, a multi-head attention mechanism is adapted for feature dimensionality reduction, and then the softmax layer is applied for multi-class Alzheimer's diagnosis. The proposed Dual-3DM 3 -AD model is compared with several baseline approaches with the help of several performance metrics. The final results unveil that the proposed work achieves 98% of accuracy, 97.8% of sensitivity, 97.5% of specificity, 98.2% of f-measure, and better ROC curves, which outperforms other existing models in multiclass Alzheimer's diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Faier完成签到,获得积分10
刚刚
Akim应助Yy采纳,获得10
刚刚
JYH12138完成签到,获得积分10
1秒前
Henry完成签到,获得积分10
1秒前
2秒前
2秒前
洛鸢发布了新的文献求助150
3秒前
哈哈哈完成签到,获得积分10
3秒前
肥肥完成签到,获得积分10
4秒前
zjcbk985发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
6秒前
6秒前
12356完成签到,获得积分10
6秒前
6秒前
脑洞疼应助温柔的迎荷采纳,获得10
6秒前
领导范儿应助suezam采纳,获得10
7秒前
7秒前
上官若男应助魔幻的从阳采纳,获得10
8秒前
TianYe6680完成签到,获得积分10
8秒前
古风发布了新的文献求助10
8秒前
9秒前
sober123发布了新的文献求助10
9秒前
9秒前
zjcbk985完成签到,获得积分10
9秒前
ylm发布了新的文献求助10
9秒前
耍酷千山发布了新的文献求助10
10秒前
慕青应助科研通管家采纳,获得10
10秒前
喜悦中道应助科研通管家采纳,获得50
10秒前
小林太郎应助科研通管家采纳,获得20
10秒前
天天快乐应助rylynn采纳,获得10
10秒前
酷波er应助科研通管家采纳,获得10
10秒前
wanci应助科研通管家采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
脑洞疼应助科研通管家采纳,获得10
11秒前
ding应助科研通管家采纳,获得10
11秒前
传奇3应助南北采纳,获得30
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543600
求助须知:如何正确求助?哪些是违规求助? 3120949
关于积分的说明 9344906
捐赠科研通 2818967
什么是DOI,文献DOI怎么找? 1549876
邀请新用户注册赠送积分活动 722316
科研通“疑难数据库(出版商)”最低求助积分说明 713126