Machine Learning Test for Modulation Range of Ammonium Metatungstate Based Liquid Electrochromic Devices

电致变色 电致变色装置 调制(音乐) 航程(航空) 材料科学 化学 分析化学(期刊) 纳米技术 计算机科学 色谱法 电极 物理 物理化学 有机化学 复合材料 声学
作者
Haoyang Yan,Muyun Li,Honglong Ning,Chenxiao Guo,Xinglin Li,Zihan Zhang,Bingyan Jiang,Wenjing Xu,Rihui Yao,Junbiao Peng
出处
期刊:Lecture notes in electrical engineering 卷期号:: 505-513
标识
DOI:10.1007/978-981-99-9955-2_68
摘要

In recent years, machine learning (ML) has been widely applied in material science for material synthesis and molecular structural prediction. However, the application of machine learning in the field of electrochromic devices (ECDs) is relatively limited and only involves traditional solid-state ECDs. In comparison to solid-state devices, liquid devices have simpler structures and better performance, making them a promising research direction for the future. In this study, we explore the effects of ferrous chloride and ferrous sulfate as additives on ammonium metatungstate liquid ECDs. Electrochromic solutions with different concentrations were synthesized using the hydrothermal method, to fabricate three-layer electrode / electrochromic liquid / electrode devices. The alternation of transmittance at different current were measured to calculate the modulation range. Using the measuring results as training data, seven different regression algorithms were used to construct the modulation range models of these two kinds of ECDs, and their generalization ability was compared. In addition, we used different models to predict the solution formulations of ECDs with optimal modulation range, then fabricated new ECDs based on these formulations to verify the predictions. It turns out that modulation range models using decision tree regression and kernel ridge regression have the best prediction performance. In addition, considering the model generalization ability and prediction accuracy for the optimal formulation, decision tree regression is the best ML algorithm for both ammonium metatungstate-ferrous chloride and ammonium metatungstate-ferrous sulfate based ECDs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
eating完成签到,获得积分10
刚刚
雷家完成签到,获得积分10
1秒前
虚心的冷雪完成签到,获得积分10
1秒前
1秒前
无花果应助还单身的玫瑰采纳,获得10
3秒前
am完成签到,获得积分10
3秒前
傲娇的夜山完成签到,获得积分10
3秒前
xjy1521完成签到,获得积分10
3秒前
晶晶完成签到,获得积分10
4秒前
Dlan完成签到,获得积分10
4秒前
完美世界应助wing采纳,获得10
4秒前
WIK发布了新的文献求助20
4秒前
Qian完成签到,获得积分10
4秒前
zhxhh完成签到,获得积分10
5秒前
小九九发布了新的文献求助10
5秒前
去偷火龙果完成签到,获得积分10
5秒前
6秒前
袁奇点完成签到,获得积分10
6秒前
在下风爵完成签到,获得积分10
6秒前
cdercder应助clown采纳,获得10
6秒前
淡定从凝完成签到,获得积分10
6秒前
共享精神应助义气剑通采纳,获得10
7秒前
科研通AI2S应助DQ采纳,获得10
7秒前
鸢尾完成签到 ,获得积分10
7秒前
明帅完成签到,获得积分10
8秒前
Amy完成签到,获得积分10
8秒前
聪明眼睛完成签到,获得积分10
8秒前
大模型应助小熵采纳,获得10
8秒前
斯寜应助slow采纳,获得10
8秒前
爱吃巧克力的草莓应助slow采纳,获得10
8秒前
科研通AI2S应助噜啦啦采纳,获得10
8秒前
honey完成签到,获得积分10
8秒前
9秒前
GongSyi完成签到 ,获得积分10
9秒前
9秒前
yh发布了新的文献求助10
10秒前
10秒前
HZW完成签到,获得积分10
10秒前
科研通AI5应助明理的依柔采纳,获得30
10秒前
尔尔完成签到,获得积分10
10秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3746471
求助须知:如何正确求助?哪些是违规求助? 3289359
关于积分的说明 10064159
捐赠科研通 3005740
什么是DOI,文献DOI怎么找? 1650360
邀请新用户注册赠送积分活动 785858
科研通“疑难数据库(出版商)”最低求助积分说明 751296