过电位
析氧
材料科学
无定形固体
分解水
电化学
催化作用
纳米技术
化学工程
拉曼光谱
电极
化学
光催化
物理化学
生物化学
光学
物理
工程类
有机化学
作者
Jie Zhu,Junxue Chen,Xida Li,Kun Luo,Zewei Xiong,Zhiyu Zhou,Wenyun Zhu,Zhihong Luo,Jingbin Huang,Yibing Li
标识
DOI:10.1016/j.jechem.2024.01.020
摘要
Surface reconstruction yields real active species in electrochemical oxygen evolution reaction (OER) conditions; however, rationally regulating reconstruction in a targeted manner for constructing highly active OER electrocatalysts remains a formidable challenge. Here, an electrochemical activation strategy with selective etching was utilized to guide the reconstruction process of a hybrid cobalt-molybdenum oxide (CoMoO4/Co3O4@CC) in a favorable direction to improve the OER performance. Both in-situ Raman and multiple ex-situ characterization tools demonstrate that controlled surface reconstruction can be easily achieved through Mo etching, with the formation of a dynamically stable amorphous-crystalline heterostructure. Theoretical calculations together with experimental results reveal that the synergistic effects between amorphous CoOOH and crystalline Co3O4 are crucial in enhancing the catalytic performance. Consequently, the reconstructed CoMoO4/Co3O4@CC exhibits a low overpotential of 250 mV to achieve a current density of 10 mA cm−2 in 1 M KOH, and more importantly it can be practiced in electrolytic water splitting and rechargeable zinc-air batteries devices, achieving ultra-long stability for over 500 and 1200 h, respectively. This work provides a promising route for the construction of high-performance electrocatalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI