浸出(土壤学)
赤铁矿
磁选
尾矿
杂质
材料科学
冶金
化学
地质学
有机化学
土壤科学
土壤水分
作者
Cong Li,Xiaofeng Yang,Yongkui Li,Yu Chen,Xiaodong Pan,Yongping Xie,Xingyu Liu,Suqin Li
标识
DOI:10.1016/j.wasman.2023.11.026
摘要
Hematite tailings (HTs) are rich in silica and are used as replacements for fine aggregates in the preparation of construction materials. However, there is scope for a more effective utilization of the valuable elements present in HTs. In this paper, a process for preparing high-purity SiO2 using HTs procured from Ansteel (China) is proposed. HTs were treated using the superconducting high-gradient magnetic separation (S-HGMS) technology, where the silica as part of the nonmagnetic fraction was obtained in the form of a high-silica concentrate, which was then subjected to mixed-acid leaching to dissolve impurities to achieve refined purification. The optimum process conditions for S-HGMS were determined, and the response surface methodology was applied to optimize the process parameters of the mixed-acid leaching process. The process indicators of the mixed-acid leaching step included the leaching time, leaching temperature, and molar ratio of the mixed acids. The optimum process conditions for S-HGMS were as follows: the magnetic strength-to-velocity ratio in the weak magnetic separation stage was set to 0.034 T·s/m whereas it was maintained at 0.076 T·s/m in the strong magnetic separation stage; the pulp concentration was 40 g/L, the pulp velocity was 500 mL/min, and the dispersant concentration was 1 mg/g. Under these conditions, the high-silica pulp was processed. The corresponding SiO2 grade increased from 71.788 % to 95.260 %, and its recovery and yield reached 56.330 % and 42.450 %, respectively. The SiO2 content in the sample increased from 95.260 % to 99.961 %. Further, the mechanisms of the S-HGMS and mixed-acid leaching were revealed. The proposed process is environmentally friendly and operationally inexpensive. It can reduce the amount of HTs by 42.450 %, and the obtained high-purity silica product has high economic value and good industrialization prospects.
科研通智能强力驱动
Strongly Powered by AbleSci AI