Over-sampling for data augmentation in data-driven models for the shear strength prediction of RC membranes

过度拟合 采样(信号处理) 随机森林 阿达布思 计算机科学 数据挖掘 人工智能 机器学习 数据集 集合(抽象数据类型) 支持向量机 人工神经网络 滤波器(信号处理) 计算机视觉 程序设计语言
作者
Luis Alberto Bedriñana,Jostin Gabriel Landeo,Julio Sucasaca,Christian Málaga‐Chuquitaype
出处
期刊:Structures [Elsevier]
卷期号:60: 105870-105870
标识
DOI:10.1016/j.istruc.2024.105870
摘要

Complex reinforced concrete (RC) structures are generally assessed as a group of individual membrane elements subjected to in-plane combined stresses; however, an accurate prediction of the shear strength of such elements is still a complex task. In addition, the limited availability of experimental data of RC panels, which also presents an unbalanced statistical distribution towards lower strength values, limits the development of data-driven models. Thus, it is crucial to explore data augmentation techniques with a view to supporting the development of more accurate and generalizable predictive models in structural engineering. This paper evaluates over-sampling techniques for data augmentation and their use in the creation of an explainable, data-driven model for the shear strength prediction of RC panels. A dataset of 195 experimental tests of RC panels under different loading conditions is initially collected. Five over-sampling techniques are implemented to extend the original dataset and to reduce the imbalance. Three ensemble models (Random Forest, AdaBoost, and XGBoost) are trained with each of the generated datasets. It is observed that all the over-sampling techniques produced predictive models with better performance than the original dataset; however, the results show that by applying the Random Over-Sampling (ROS) the performance metrics of the model can significantly increase (around 39% for some metrics) compared to the model with the original dataset, without any overfitting issues. This strategy allowed to develop an accurate XGBoost model (with a value of R2 = 0.97 for the testing set). The explainability of the final predictive model (XGBoost model obtained from ROS) is evaluated using the SHAP (SHapley Additive exPlanations) analysis. The proposed predictive model outperformed traditional mechanics-based models (improvement of approximately 27% over SMCS and 33% over MCFT for some performance metrics) and with a more controlled error distribution over the range of variables. The proposed model was also more accurate (mean prediction ratio of 0.98) than sophisticated finite element analysis (mean prediction ratio of 0.84) for six specimens of the original dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助rudjs采纳,获得10
1秒前
1秒前
zsyzxb发布了新的文献求助10
2秒前
东东发布了新的文献求助10
2秒前
zena92发布了新的文献求助10
3秒前
锤子米完成签到,获得积分10
3秒前
3秒前
赤练仙子完成签到,获得积分10
5秒前
MnO2fff应助zsyzxb采纳,获得20
8秒前
kingwill应助zsyzxb采纳,获得20
8秒前
顺利鱼完成签到,获得积分10
9秒前
11秒前
12秒前
Xx.完成签到,获得积分10
13秒前
星辰大海应助内向凌兰采纳,获得10
13秒前
13秒前
wuzhizhiya完成签到,获得积分10
14秒前
15秒前
rudjs发布了新的文献求助10
15秒前
18秒前
Ava应助何糖采纳,获得10
18秒前
桐桐应助美丽的芷烟采纳,获得10
18秒前
野子完成签到,获得积分10
19秒前
情怀应助小D采纳,获得30
20秒前
yuan发布了新的文献求助10
20秒前
berry发布了新的文献求助10
21秒前
21秒前
淡淡采白发布了新的文献求助10
22秒前
思源应助勤恳慕蕊采纳,获得10
22秒前
知犯何逆完成签到 ,获得积分10
23秒前
啊哈完成签到,获得积分10
23秒前
24秒前
24秒前
Draven完成签到 ,获得积分10
24秒前
tmpstlml发布了新的文献求助10
25秒前
张红梨完成签到,获得积分10
25秒前
迷迷完成签到,获得积分20
26秒前
26秒前
科研通AI2S应助chen采纳,获得10
27秒前
穿山甲坐飞机完成签到 ,获得积分10
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808