亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Over-sampling for data augmentation in data-driven models for the shear strength prediction of RC membranes

过度拟合 采样(信号处理) 随机森林 阿达布思 计算机科学 数据挖掘 人工智能 机器学习 数据集 集合(抽象数据类型) 支持向量机 人工神经网络 滤波器(信号处理) 计算机视觉 程序设计语言
作者
Luis Alberto Bedriñana,Jostin Gabriel Landeo,Julio Sucasaca,Christian Málaga‐Chuquitaype
出处
期刊:Structures [Elsevier]
卷期号:60: 105870-105870
标识
DOI:10.1016/j.istruc.2024.105870
摘要

Complex reinforced concrete (RC) structures are generally assessed as a group of individual membrane elements subjected to in-plane combined stresses; however, an accurate prediction of the shear strength of such elements is still a complex task. In addition, the limited availability of experimental data of RC panels, which also presents an unbalanced statistical distribution towards lower strength values, limits the development of data-driven models. Thus, it is crucial to explore data augmentation techniques with a view to supporting the development of more accurate and generalizable predictive models in structural engineering. This paper evaluates over-sampling techniques for data augmentation and their use in the creation of an explainable, data-driven model for the shear strength prediction of RC panels. A dataset of 195 experimental tests of RC panels under different loading conditions is initially collected. Five over-sampling techniques are implemented to extend the original dataset and to reduce the imbalance. Three ensemble models (Random Forest, AdaBoost, and XGBoost) are trained with each of the generated datasets. It is observed that all the over-sampling techniques produced predictive models with better performance than the original dataset; however, the results show that by applying the Random Over-Sampling (ROS) the performance metrics of the model can significantly increase (around 39% for some metrics) compared to the model with the original dataset, without any overfitting issues. This strategy allowed to develop an accurate XGBoost model (with a value of R2 = 0.97 for the testing set). The explainability of the final predictive model (XGBoost model obtained from ROS) is evaluated using the SHAP (SHapley Additive exPlanations) analysis. The proposed predictive model outperformed traditional mechanics-based models (improvement of approximately 27% over SMCS and 33% over MCFT for some performance metrics) and with a more controlled error distribution over the range of variables. The proposed model was also more accurate (mean prediction ratio of 0.98) than sophisticated finite element analysis (mean prediction ratio of 0.84) for six specimens of the original dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
子月之路完成签到,获得积分10
8秒前
wyy完成签到 ,获得积分10
14秒前
henryhc_完成签到,获得积分10
26秒前
antarctic_2022完成签到,获得积分10
39秒前
Zhang关注了科研通微信公众号
46秒前
夏天完成签到,获得积分10
50秒前
50秒前
GGGrigor完成签到,获得积分10
1分钟前
填充物完成签到 ,获得积分10
1分钟前
1分钟前
Zhang发布了新的文献求助10
1分钟前
楠笙发布了新的文献求助10
1分钟前
1分钟前
在水一方应助科研通管家采纳,获得10
1分钟前
共享精神应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
cacaldon发布了新的文献求助10
1分钟前
linjiaxin发布了新的文献求助10
2分钟前
欣喜怜南完成签到 ,获得积分10
2分钟前
sui完成签到,获得积分20
2分钟前
湿棉花完成签到 ,获得积分10
2分钟前
隐形曼青应助sui采纳,获得10
2分钟前
斯文的苡完成签到,获得积分10
2分钟前
FengYun完成签到 ,获得积分0
2分钟前
罗零完成签到 ,获得积分10
2分钟前
韩十四完成签到,获得积分10
2分钟前
楠笙完成签到,获得积分10
2分钟前
cacaldon完成签到,获得积分10
3分钟前
沉醉的中国钵完成签到 ,获得积分10
3分钟前
3分钟前
sui发布了新的文献求助10
3分钟前
红烧茄子完成签到,获得积分10
3分钟前
自信萃完成签到 ,获得积分10
3分钟前
ot完成签到,获得积分10
3分钟前
CodeCraft应助科研通管家采纳,获得10
3分钟前
linjiaxin发布了新的文献求助10
3分钟前
ding应助泡面小猪采纳,获得10
3分钟前
max完成签到 ,获得积分10
3分钟前
利奈唑胺完成签到,获得积分10
4分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137011
求助须知:如何正确求助?哪些是违规求助? 2787960
关于积分的说明 7784078
捐赠科研通 2444023
什么是DOI,文献DOI怎么找? 1299627
科研通“疑难数据库(出版商)”最低求助积分说明 625497
版权声明 600989