Over-sampling for data augmentation in data-driven models for the shear strength prediction of RC membranes

过度拟合 采样(信号处理) 随机森林 阿达布思 计算机科学 数据挖掘 人工智能 机器学习 数据集 集合(抽象数据类型) 支持向量机 人工神经网络 滤波器(信号处理) 计算机视觉 程序设计语言
作者
Luis Alberto Bedriñana,Jostin Gabriel Landeo,Julio Sucasaca,Christian Málaga‐Chuquitaype
出处
期刊:Structures [Elsevier BV]
卷期号:60: 105870-105870
标识
DOI:10.1016/j.istruc.2024.105870
摘要

Complex reinforced concrete (RC) structures are generally assessed as a group of individual membrane elements subjected to in-plane combined stresses; however, an accurate prediction of the shear strength of such elements is still a complex task. In addition, the limited availability of experimental data of RC panels, which also presents an unbalanced statistical distribution towards lower strength values, limits the development of data-driven models. Thus, it is crucial to explore data augmentation techniques with a view to supporting the development of more accurate and generalizable predictive models in structural engineering. This paper evaluates over-sampling techniques for data augmentation and their use in the creation of an explainable, data-driven model for the shear strength prediction of RC panels. A dataset of 195 experimental tests of RC panels under different loading conditions is initially collected. Five over-sampling techniques are implemented to extend the original dataset and to reduce the imbalance. Three ensemble models (Random Forest, AdaBoost, and XGBoost) are trained with each of the generated datasets. It is observed that all the over-sampling techniques produced predictive models with better performance than the original dataset; however, the results show that by applying the Random Over-Sampling (ROS) the performance metrics of the model can significantly increase (around 39% for some metrics) compared to the model with the original dataset, without any overfitting issues. This strategy allowed to develop an accurate XGBoost model (with a value of R2 = 0.97 for the testing set). The explainability of the final predictive model (XGBoost model obtained from ROS) is evaluated using the SHAP (SHapley Additive exPlanations) analysis. The proposed predictive model outperformed traditional mechanics-based models (improvement of approximately 27% over SMCS and 33% over MCFT for some performance metrics) and with a more controlled error distribution over the range of variables. The proposed model was also more accurate (mean prediction ratio of 0.98) than sophisticated finite element analysis (mean prediction ratio of 0.84) for six specimens of the original dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
123完成签到 ,获得积分10
1秒前
dadii发布了新的文献求助10
2秒前
3秒前
韩涵发布了新的文献求助10
3秒前
3秒前
4秒前
月下荷花发布了新的文献求助10
4秒前
5秒前
6秒前
共享精神应助LiangHu采纳,获得10
6秒前
flippedaaa发布了新的文献求助10
7秒前
7秒前
胡宇发布了新的文献求助10
7秒前
kkk发布了新的文献求助10
8秒前
8秒前
8秒前
215858687发布了新的文献求助10
10秒前
健康的雨灵完成签到,获得积分10
10秒前
ZQ发布了新的文献求助10
11秒前
犹豫的踏歌完成签到,获得积分10
11秒前
白杨木影子被拉长完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
闪闪采梦发布了新的文献求助10
13秒前
胡宇完成签到,获得积分10
15秒前
我是老大应助flippedaaa采纳,获得10
17秒前
zz完成签到,获得积分10
17秒前
nicelily完成签到 ,获得积分10
18秒前
entity完成签到,获得积分10
18秒前
18秒前
18秒前
19秒前
19秒前
Julien完成签到,获得积分10
19秒前
20秒前
强强强发布了新的文献求助10
21秒前
轻松雁蓉发布了新的文献求助10
22秒前
踏雪飞鸿发布了新的文献求助10
22秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980408
求助须知:如何正确求助?哪些是违规求助? 3524319
关于积分的说明 11220990
捐赠科研通 3261764
什么是DOI,文献DOI怎么找? 1800909
邀请新用户注册赠送积分活动 879424
科研通“疑难数据库(出版商)”最低求助积分说明 807261