已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A DETR-like detector-based semi-supervised object detection method for Brassica Chinensis growth monitoring

芸苔属 探测器 计算机科学 人工智能 对象(语法) 目标检测 计算机视觉 模式识别(心理学) 遥感 数据挖掘 生物 地理 农学 电信
作者
Haoyan Li,Fanhuai Shi
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:219: 108788-108788 被引量:3
标识
DOI:10.1016/j.compag.2024.108788
摘要

Object detection technology plays a crucial role in crop growth monitoring within smart agriculture. However, data labeling is a costly process necessary for constructing a large-scale dataset, which is essential to prevent overfitting in deep learning-based object detection models. Semi-Supervised Object Detection (SSOD) presents a cost-effective solution to reduce labeling and model training expenses; nevertheless, existing SSOD algorithms fall short in addressing the specific challenges posed by detection tasks in Brassica Chinensis growth monitoring. Specifically, the two-stage object detector cannot be well-suited for scenes characterized by severe occlusion and complex backgrounds. The Non-Maximum Suppression (NMS) may filter out numerous true positives in scenarios with severe occlusion. Moreover, the label assignment enlarges the negative effects of the noise introduced by teacher model's prediction, resulting in potential divergence. To tackle these challenges, we propose an end-to-end SSOD method based on Detection Transformer (DETR), which streamlines the post-processing without NMS and adopts a more advanced bipartite matching assignment strategy. These modifications tailor the semi-supervised training method to better align with the unique characteristics of detection tasks in Brassica Chinensis growth monitoring. Furthermore, two key techniques: low threshold filtering and decoupled optimization, are introduced to address class-imbalance and multi-task optimization conflict in the tasks, respectively. In the end, we conduct experiments using two self-constructed Brassica Chinensis image datasets to validate the effectiveness of the proposed method, which demonstrates state-of-the-art (SOTA) performance in both tasks. For plant detection, the proposed method achieves an mAP of 74.1 using only 5 % of the total data volume (18 images). In the wormhole detection task, the method achieves an AP50 of 73.7 using 5 % of the total data volume (73 images). These impressive results meet the requirements for practical applications in Brassica Chinensis growth monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
追三完成签到 ,获得积分10
3秒前
斯文败类应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
伦哥读论文完成签到,获得积分10
6秒前
科研通AI2S应助Corn_Dog采纳,获得10
6秒前
认真的幻姬完成签到 ,获得积分10
8秒前
CodeCraft应助xiaoyan采纳,获得10
9秒前
19秒前
23秒前
竞鹤应助臭臭鲁班采纳,获得20
23秒前
master-f完成签到 ,获得积分10
23秒前
25秒前
外向一一完成签到,获得积分10
29秒前
邵邵发布了新的文献求助10
30秒前
端庄半凡完成签到 ,获得积分10
31秒前
struggling2026完成签到 ,获得积分10
32秒前
meredith0571完成签到,获得积分10
32秒前
乳酸菌小面包完成签到,获得积分10
33秒前
Nancy0818完成签到 ,获得积分10
34秒前
碧蓝的盼夏完成签到,获得积分10
35秒前
每天都很忙完成签到 ,获得积分10
37秒前
去2完成签到,获得积分10
40秒前
深情安青应助科研雅雅子采纳,获得10
41秒前
journey完成签到 ,获得积分10
41秒前
可久斯基完成签到 ,获得积分10
43秒前
44秒前
47秒前
西瓜发布了新的文献求助50
49秒前
科研通AI5应助Tommy_Ali采纳,获得10
52秒前
hhhhhhh完成签到,获得积分10
57秒前
邵邵完成签到,获得积分10
58秒前
笨笨完成签到,获得积分10
58秒前
或许自由更胜一筹完成签到 ,获得积分10
1分钟前
赘婿应助dengdengdeng采纳,获得30
1分钟前
Zhang完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1500
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3773598
求助须知:如何正确求助?哪些是违规求助? 3319118
关于积分的说明 10193082
捐赠科研通 3033727
什么是DOI,文献DOI怎么找? 1664634
邀请新用户注册赠送积分活动 796263
科研通“疑难数据库(出版商)”最低求助积分说明 757390