A DETR-like detector-based semi-supervised object detection method for Brassica Chinensis growth monitoring

芸苔属 探测器 计算机科学 人工智能 对象(语法) 目标检测 计算机视觉 模式识别(心理学) 遥感 数据挖掘 生物 地理 农学 电信
作者
Haoyan Li,Fanhuai Shi
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:219: 108788-108788 被引量:6
标识
DOI:10.1016/j.compag.2024.108788
摘要

Object detection technology plays a crucial role in crop growth monitoring within smart agriculture. However, data labeling is a costly process necessary for constructing a large-scale dataset, which is essential to prevent overfitting in deep learning-based object detection models. Semi-Supervised Object Detection (SSOD) presents a cost-effective solution to reduce labeling and model training expenses; nevertheless, existing SSOD algorithms fall short in addressing the specific challenges posed by detection tasks in Brassica Chinensis growth monitoring. Specifically, the two-stage object detector cannot be well-suited for scenes characterized by severe occlusion and complex backgrounds. The Non-Maximum Suppression (NMS) may filter out numerous true positives in scenarios with severe occlusion. Moreover, the label assignment enlarges the negative effects of the noise introduced by teacher model's prediction, resulting in potential divergence. To tackle these challenges, we propose an end-to-end SSOD method based on Detection Transformer (DETR), which streamlines the post-processing without NMS and adopts a more advanced bipartite matching assignment strategy. These modifications tailor the semi-supervised training method to better align with the unique characteristics of detection tasks in Brassica Chinensis growth monitoring. Furthermore, two key techniques: low threshold filtering and decoupled optimization, are introduced to address class-imbalance and multi-task optimization conflict in the tasks, respectively. In the end, we conduct experiments using two self-constructed Brassica Chinensis image datasets to validate the effectiveness of the proposed method, which demonstrates state-of-the-art (SOTA) performance in both tasks. For plant detection, the proposed method achieves an mAP of 74.1 using only 5 % of the total data volume (18 images). In the wormhole detection task, the method achieves an AP50 of 73.7 using 5 % of the total data volume (73 images). These impressive results meet the requirements for practical applications in Brassica Chinensis growth monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助羊羊羊采纳,获得10
刚刚
LL完成签到,获得积分10
刚刚
无奈的翅膀完成签到 ,获得积分10
1秒前
热情的未来完成签到,获得积分20
2秒前
2秒前
自由的松发布了新的文献求助10
2秒前
3秒前
5秒前
傅雪冥完成签到,获得积分10
5秒前
6秒前
6秒前
Mark发布了新的文献求助10
7秒前
8秒前
10秒前
yaalan完成签到,获得积分10
10秒前
10秒前
11秒前
残山醉梦发布了新的文献求助10
12秒前
KDS完成签到,获得积分10
13秒前
Uload发布了新的文献求助10
14秒前
8R60d8应助轩辕寄风采纳,获得10
14秒前
yy发布了新的文献求助10
14秒前
15秒前
量子星尘发布了新的文献求助10
17秒前
yaalan发布了新的文献求助10
18秒前
万文涛发布了新的文献求助10
19秒前
不朽阳神完成签到,获得积分10
21秒前
22秒前
脑洞疼应助风中的丝袜采纳,获得10
23秒前
23秒前
斯文紫菜完成签到,获得积分10
24秒前
24秒前
fwh完成签到,获得积分20
28秒前
29秒前
五十一笑声完成签到,获得积分10
30秒前
yy完成签到,获得积分10
31秒前
32秒前
33秒前
JamesPei应助YAMO一采纳,获得10
34秒前
34秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956697
求助须知:如何正确求助?哪些是违规求助? 3502770
关于积分的说明 11110029
捐赠科研通 3233693
什么是DOI,文献DOI怎么找? 1787452
邀请新用户注册赠送积分活动 870685
科研通“疑难数据库(出版商)”最低求助积分说明 802152