PROSAIL-Net: A transfer learning-based dual stream neural network to estimate leaf chlorophyll and leaf angle of crops from UAV hyperspectral images

高光谱成像 遥感 卷积神经网络 人工神经网络 基本事实 模式识别(心理学) 计算机科学 人工智能 地理
作者
Sourav Bhadra,Vasit Sagan,Supria Sarkar,Max Braud,Todd C. Mockler,Andrea L. Eveland
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:210: 1-24 被引量:11
标识
DOI:10.1016/j.isprsjprs.2024.02.020
摘要

Accurate and efficient estimation of crop biophysical traits, such as leaf chlorophyll concentrations (LCC) and average leaf angle (ALA), is an important bridge between intelligent crop breeding and precision agriculture. While Unmanned Aerial Vehicle (UAV)-based hyperspectral sensors and advanced machine learning models offer high-throughput solutions, collecting sufficient ground truth data for machine learning training can be challenging, leading to models that lack generalizability for practical uses. This study proposes a transfer learning based dual stream neural network (DSNN) called PROSAIL-Net, which leverages the knowledge gained from PROSAIL simulation and improves the estimation of corn LCC and ALA from UAV-borne hyperspectral images. In addition to hyperspectral data, the DSNN also includes solar-sensor geometry data, which was automatically extracted from a cross-grid UAV flight. The hyperspectral branch in the DSNN was also tested with multi-layer perceptron (MLP), long short-term memory (LSTM), gated recurrent unit (GRU), and 1D convolutional neural network (CNN) architectures. The results suggest that the 1D CNN architecture exhibits superior performance compared to MLP, LSTM, and GRU networks when used in the spectral branch of DSNN. PROSAIL-Net outperforms all other modeling scenarios in predicting LCC (R2 0.66, NRMSE 8.81%) and ALA (R2 0.57, NRMSE 24.32%) and the use of multi-angular UAV observations significantly improves the prediction accuracy of both LCC (R2 improved from 0.52 to 0.66) and ALA (R2 improved from 0.35 to 0.57). This study highlights the importance of utilizing large amounts of PROSAIL-simulated data in conjunction with transfer learning and multi-angular UAV observations in precision agriculture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
魔幻安雁发布了新的文献求助10
刚刚
旭日东升发布了新的文献求助10
1秒前
星辰大海应助称心寒松采纳,获得10
2秒前
星辰大海应助超帅雁露采纳,获得10
3秒前
4秒前
dangdangdang发布了新的文献求助10
4秒前
W雩发布了新的文献求助10
4秒前
完美世界应助科研小狗采纳,获得10
4秒前
5秒前
7秒前
7秒前
旭日东升完成签到,获得积分10
7秒前
舒适乐儿发布了新的文献求助10
9秒前
9秒前
Rain发布了新的文献求助10
10秒前
花开富贵发布了新的文献求助10
11秒前
11秒前
xiaojinzi发布了新的文献求助10
11秒前
12秒前
12秒前
张弘发布了新的文献求助10
12秒前
不知名混子完成签到 ,获得积分10
12秒前
噗尼噗尼完成签到,获得积分10
12秒前
Tetrahydron完成签到,获得积分10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
SYLH应助科研通管家采纳,获得10
13秒前
JamesPei应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得30
13秒前
情怀应助科研通管家采纳,获得10
13秒前
bkagyin应助科研通管家采纳,获得30
13秒前
13秒前
香蕉觅云应助科研通管家采纳,获得10
13秒前
称心寒松发布了新的文献求助10
13秒前
CodeCraft应助科研通管家采纳,获得80
13秒前
汉堡包应助科研通管家采纳,获得10
13秒前
大个应助wunai012321采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
13秒前
Akim应助科研通管家采纳,获得10
13秒前
CipherSage应助科研通管家采纳,获得10
14秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740937
求助须知:如何正确求助?哪些是违规求助? 3283720
关于积分的说明 10036381
捐赠科研通 3000455
什么是DOI,文献DOI怎么找? 1646510
邀请新用户注册赠送积分活动 783711
科研通“疑难数据库(出版商)”最低求助积分说明 750427