An improved YOLOv5 for identifying pigs postures

计算机科学 块(置换群论) 人工智能 特征(语言学) 模式识别(心理学) 数学 哲学 语言学 几何学
作者
Mao Liang,C. Liu,Y.F. Li,Weiliang Zhu,Linlin Wang
标识
DOI:10.1117/12.3018065
摘要

Pork is the largest meat consumed in China. The stable supply of pork is closely related to national life. Therefore, the health of pigs in pig enterprises is particularly important. By monitoring the behavior of pigs, we can find out the diseases of pigs and intervene in time to reduce the losses of enterprises and ensure the stable supply of pork in the market. This paper presents an improved YOLOv5 pig behavior recognition method, which can automatically recognize five behaviors of pigs:standing, ventral lying, lateral lying, sitting and climbing. Firstly,in the YOLOv5 network structure, a branch is added to its original C3 module to extract more original features. Secondly, the Convolutional Block Attention Module (CBAM) attention mechanism module is introduced and further integrated with the C3 module to obtain the new CBAMC3 module, which enhances the recognition capability of the model for obstructed targets. Meanwhile, the neck module in You Only Live Once (YOLO) v5 is improved and the Cneck module is proposed. By adding the feature fusion layer, the neck can obtain a greater number of underlying image features, provide more image features for the prediction layer, and enhance the recognition capability of the model. The improved YOLOv5 model was tested on the pig behavior dataset built in this study, and the outcome indicated that the recognition accuracy of the method for the five behaviors in the validation set was 99.1%, 95.3%, 97.4%, 88.7% and 99.5%, respectively, with an average accuracy of 96.0%, which was 1.2% more than the YOLOv5 model, and the proposed method has more merits. The method proposed in this paper has more merits and is beneficial to practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
流星飞完成签到,获得积分10
刚刚
1秒前
非也的非也完成签到,获得积分10
1秒前
ROMANTIC完成签到 ,获得积分10
2秒前
xiaowang完成签到,获得积分10
2秒前
年轻的绿凝完成签到,获得积分10
3秒前
Wait完成签到,获得积分10
3秒前
华仔应助huofuman采纳,获得10
3秒前
女娇娥完成签到,获得积分10
4秒前
some应助zh20130采纳,获得10
4秒前
5秒前
5秒前
陈少华发布了新的文献求助10
6秒前
wanjingwan完成签到 ,获得积分10
6秒前
ly完成签到,获得积分10
7秒前
7秒前
7秒前
陈先生完成签到,获得积分10
8秒前
三寿完成签到,获得积分10
8秒前
GU完成签到,获得积分10
9秒前
duke发布了新的文献求助10
10秒前
牧星河完成签到,获得积分10
10秒前
10秒前
慕青应助Lengbo采纳,获得10
10秒前
似水流年完成签到 ,获得积分10
11秒前
文艺鞋子完成签到,获得积分10
11秒前
FashionBoy应助11采纳,获得10
12秒前
Junlei完成签到,获得积分10
14秒前
Sean发布了新的文献求助10
14秒前
ytong完成签到,获得积分10
14秒前
huofuman完成签到,获得积分10
15秒前
田様应助文艺鞋子采纳,获得10
15秒前
五味杂陈完成签到,获得积分10
15秒前
科研韭菜完成签到 ,获得积分10
15秒前
LLLK发布了新的文献求助10
16秒前
开心的饼干完成签到,获得积分10
16秒前
虚心的惮完成签到 ,获得积分10
16秒前
无心的大侠完成签到 ,获得积分10
16秒前
妙奇完成签到,获得积分10
17秒前
Zbmd完成签到,获得积分10
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953552
求助须知:如何正确求助?哪些是违规求助? 3499089
关于积分的说明 11093922
捐赠科研通 3229669
什么是DOI,文献DOI怎么找? 1785711
邀请新用户注册赠送积分活动 869476
科研通“疑难数据库(出版商)”最低求助积分说明 801478