An improved YOLOv5 for identifying pigs postures

计算机科学 块(置换群论) 人工智能 特征(语言学) 模式识别(心理学) 数学 哲学 语言学 几何学
作者
Mao Liang,C. Liu,Y.F. Li,Weiliang Zhu,Linlin Wang
标识
DOI:10.1117/12.3018065
摘要

Pork is the largest meat consumed in China. The stable supply of pork is closely related to national life. Therefore, the health of pigs in pig enterprises is particularly important. By monitoring the behavior of pigs, we can find out the diseases of pigs and intervene in time to reduce the losses of enterprises and ensure the stable supply of pork in the market. This paper presents an improved YOLOv5 pig behavior recognition method, which can automatically recognize five behaviors of pigs:standing, ventral lying, lateral lying, sitting and climbing. Firstly,in the YOLOv5 network structure, a branch is added to its original C3 module to extract more original features. Secondly, the Convolutional Block Attention Module (CBAM) attention mechanism module is introduced and further integrated with the C3 module to obtain the new CBAMC3 module, which enhances the recognition capability of the model for obstructed targets. Meanwhile, the neck module in You Only Live Once (YOLO) v5 is improved and the Cneck module is proposed. By adding the feature fusion layer, the neck can obtain a greater number of underlying image features, provide more image features for the prediction layer, and enhance the recognition capability of the model. The improved YOLOv5 model was tested on the pig behavior dataset built in this study, and the outcome indicated that the recognition accuracy of the method for the five behaviors in the validation set was 99.1%, 95.3%, 97.4%, 88.7% and 99.5%, respectively, with an average accuracy of 96.0%, which was 1.2% more than the YOLOv5 model, and the proposed method has more merits. The method proposed in this paper has more merits and is beneficial to practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TvTiing完成签到,获得积分10
1秒前
banana完成签到,获得积分10
1秒前
666关闭了666文献求助
2秒前
fshell发布了新的文献求助20
2秒前
xm发布了新的文献求助10
3秒前
周声声发布了新的文献求助30
3秒前
4秒前
Lucas应助Dawson采纳,获得10
5秒前
5秒前
5秒前
Enna完成签到,获得积分10
5秒前
6秒前
6秒前
明天你好完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
8秒前
9秒前
9秒前
liang2508发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
12秒前
liang2508发布了新的文献求助10
12秒前
liang2508发布了新的文献求助10
12秒前
12秒前
liang2508发布了新的文献求助10
12秒前
英俊的铭应助小余采纳,获得10
12秒前
wanci应助xm采纳,获得10
12秒前
12秒前
12秒前
12秒前
Licifer完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4924906
求助须知:如何正确求助?哪些是违规求助? 4195065
关于积分的说明 13030178
捐赠科研通 3966775
什么是DOI,文献DOI怎么找? 2174275
邀请新用户注册赠送积分活动 1191665
关于科研通互助平台的介绍 1101154