Sliding Dual-Window-Inspired Reconstruction Network for Hyperspectral Anomaly Detection

像素 滑动窗口协议 计算机科学 高光谱成像 人工智能 窗口(计算) 计算机视觉 块(置换群论) 迭代重建 感受野 异常检测 异常(物理) 模式识别(心理学) 数学 物理 操作系统 凝聚态物理 几何学
作者
Degang Wang,Lina Zhuang,Lianru Gao,Xu Sun,Xiaobin Zhao,Antonio Plaza
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:20
标识
DOI:10.1109/tgrs.2024.3351179
摘要

Hyperspectral anomaly detection (HAD) aims to identify anomalous objects that deviate from surrounding backgrounds in an unlabeled hyperspectral image (HSI). Most available neural networks that make use of the reconstruction error to perform HAD tend to fit both backgrounds and anomalies, resulting in small reconstruction errors for both and not being effective in separating targets from background. To address this issue, we develop DirectNet, a new background reconstruction network for HAD that seamlessly integrates a sliding dual-window model into a blind-block architecture. Concretely, DirectNet establishes an inner window within the network's receptive field by erasing the center block information, so that the content of the inner window remains invisible during the reconstruction of the central pixel. Additionally, the depth of our reconstruction network is adaptive to the size of the input image patch, ensuring that the network's receptive field aligns with the dimensions of the input patch. The receptive field outside the inner window is considered an outer window. This weakens the impact of anomalies on the reconstruction process, causing the reconstructed pixels to converge towards the background distribution in the outer window region. Consequently, the reconstructed HSI can be regarded as a pure background HSI, leading to further amplification of reconstruction errors for anomalous targets. This enhancement improves the discriminatory ability of DirectNet. Specifically, DirectNet solely utilizes the outer window information to predict/reconstruct the central pixel. As a result, when reconstructing pixels inside anomalous targets of different sizes, the targets primarily fall within the inner window. Comprehensive experiments (conducted on four datasets) demonstrate that DirectNet achieves competitive performance compared to other state-of-the-art detectors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
5秒前
7秒前
脑洞疼应助阳阳采纳,获得10
10秒前
专注秋尽发布了新的文献求助10
11秒前
13秒前
默默的棒棒糖完成签到 ,获得积分10
15秒前
15秒前
SONG关注了科研通微信公众号
15秒前
16秒前
ding应助呆头采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
sutharsons应助科研通管家采纳,获得30
16秒前
axin应助科研通管家采纳,获得10
16秒前
terence应助科研通管家采纳,获得30
16秒前
研友_VZG7GZ应助科研通管家采纳,获得10
16秒前
sutharsons应助科研通管家采纳,获得30
16秒前
852应助科研通管家采纳,获得10
16秒前
hh应助科研通管家采纳,获得10
16秒前
sun发布了新的文献求助10
17秒前
17秒前
zhu完成签到,获得积分10
17秒前
酷波er应助缚大哥采纳,获得10
18秒前
李健应助明理雨筠采纳,获得10
18秒前
wang发布了新的文献求助10
20秒前
木头人给step_stone的求助进行了留言
20秒前
魏伯安完成签到,获得积分10
21秒前
朴素尔岚发布了新的文献求助10
22秒前
科研通AI5应助nextconnie采纳,获得10
22秒前
务实的犀牛完成签到,获得积分10
23秒前
23秒前
Blue_Pig发布了新的文献求助10
23秒前
24秒前
科研通AI2S应助橙子fy16_采纳,获得10
25秒前
LGJ完成签到,获得积分10
25秒前
wang完成签到,获得积分10
27秒前
28秒前
29秒前
脑洞疼应助Blue_Pig采纳,获得10
31秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849