Sliding Dual-Window-Inspired Reconstruction Network for Hyperspectral Anomaly Detection

像素 滑动窗口协议 计算机科学 高光谱成像 人工智能 窗口(计算) 计算机视觉 块(置换群论) 迭代重建 感受野 异常检测 异常(物理) 模式识别(心理学) 数学 物理 几何学 凝聚态物理 操作系统
作者
Degang Wang,Lina Zhuang,Lianru Gao,Xu Sun,Xiaobin Zhao,Antonio Plaza
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:45
标识
DOI:10.1109/tgrs.2024.3351179
摘要

Hyperspectral anomaly detection (HAD) aims to identify anomalous objects that deviate from surrounding backgrounds in an unlabeled hyperspectral image (HSI). Most available neural networks that make use of the reconstruction error to perform HAD tend to fit both backgrounds and anomalies, resulting in small reconstruction errors for both and not being effective in separating targets from background. To address this issue, we develop DirectNet, a new background reconstruction network for HAD that seamlessly integrates a sliding dual-window model into a blind-block architecture. Concretely, DirectNet establishes an inner window within the network's receptive field by erasing the center block information, so that the content of the inner window remains invisible during the reconstruction of the central pixel. Additionally, the depth of our reconstruction network is adaptive to the size of the input image patch, ensuring that the network's receptive field aligns with the dimensions of the input patch. The receptive field outside the inner window is considered an outer window. This weakens the impact of anomalies on the reconstruction process, causing the reconstructed pixels to converge towards the background distribution in the outer window region. Consequently, the reconstructed HSI can be regarded as a pure background HSI, leading to further amplification of reconstruction errors for anomalous targets. This enhancement improves the discriminatory ability of DirectNet. Specifically, DirectNet solely utilizes the outer window information to predict/reconstruct the central pixel. As a result, when reconstructing pixels inside anomalous targets of different sizes, the targets primarily fall within the inner window. Comprehensive experiments (conducted on four datasets) demonstrate that DirectNet achieves competitive performance compared to other state-of-the-art detectors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
闫什应助hanfs123采纳,获得10
1秒前
水牛完成签到,获得积分10
2秒前
Ww应助llllliu采纳,获得10
2秒前
无糖发布了新的文献求助10
2秒前
123关注了科研通微信公众号
3秒前
zhaimen完成签到 ,获得积分10
3秒前
领导范儿应助美好斓采纳,获得10
3秒前
3秒前
阿波罗完成签到,获得积分10
4秒前
缓慢采柳发布了新的文献求助10
4秒前
科研通AI6应助JY采纳,获得30
4秒前
4秒前
5秒前
6秒前
在水一方应助刘大可采纳,获得10
7秒前
FIGMA发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
8秒前
NexusExplorer应助我劝告了风采纳,获得10
9秒前
熙悦完成签到,获得积分10
9秒前
BILNQPL发布了新的文献求助30
11秒前
mh发布了新的文献求助10
11秒前
桐桐应助YJ采纳,获得10
12秒前
12秒前
12秒前
liu发布了新的文献求助10
12秒前
hkh发布了新的文献求助10
13秒前
14秒前
14秒前
maxilily发布了新的文献求助20
14秒前
英俊的铭应助Cole1采纳,获得10
14秒前
like完成签到,获得积分10
14秒前
16秒前
科研通AI5应助高贵从寒采纳,获得10
16秒前
zcc完成签到 ,获得积分10
16秒前
16秒前
orixero应助阿辉采纳,获得10
17秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5206603
求助须知:如何正确求助?哪些是违规求助? 4384934
关于积分的说明 13655216
捐赠科研通 4243299
什么是DOI,文献DOI怎么找? 2328013
邀请新用户注册赠送积分活动 1325687
关于科研通互助平台的介绍 1277872