Sliding Dual-Window-Inspired Reconstruction Network for Hyperspectral Anomaly Detection

像素 滑动窗口协议 计算机科学 高光谱成像 人工智能 窗口(计算) 计算机视觉 块(置换群论) 迭代重建 感受野 异常检测 异常(物理) 模式识别(心理学) 数学 物理 几何学 凝聚态物理 操作系统
作者
Degang Wang,Lina Zhuang,Lianru Gao,Xu Sun,Xiaobin Zhao,Antonio Plaza
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:34
标识
DOI:10.1109/tgrs.2024.3351179
摘要

Hyperspectral anomaly detection (HAD) aims to identify anomalous objects that deviate from surrounding backgrounds in an unlabeled hyperspectral image (HSI). Most available neural networks that make use of the reconstruction error to perform HAD tend to fit both backgrounds and anomalies, resulting in small reconstruction errors for both and not being effective in separating targets from background. To address this issue, we develop DirectNet, a new background reconstruction network for HAD that seamlessly integrates a sliding dual-window model into a blind-block architecture. Concretely, DirectNet establishes an inner window within the network's receptive field by erasing the center block information, so that the content of the inner window remains invisible during the reconstruction of the central pixel. Additionally, the depth of our reconstruction network is adaptive to the size of the input image patch, ensuring that the network's receptive field aligns with the dimensions of the input patch. The receptive field outside the inner window is considered an outer window. This weakens the impact of anomalies on the reconstruction process, causing the reconstructed pixels to converge towards the background distribution in the outer window region. Consequently, the reconstructed HSI can be regarded as a pure background HSI, leading to further amplification of reconstruction errors for anomalous targets. This enhancement improves the discriminatory ability of DirectNet. Specifically, DirectNet solely utilizes the outer window information to predict/reconstruct the central pixel. As a result, when reconstructing pixels inside anomalous targets of different sizes, the targets primarily fall within the inner window. Comprehensive experiments (conducted on four datasets) demonstrate that DirectNet achieves competitive performance compared to other state-of-the-art detectors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
z1z1z发布了新的文献求助10
刚刚
cchi完成签到,获得积分10
刚刚
1秒前
自由沧海发布了新的文献求助10
1秒前
jing完成签到,获得积分10
1秒前
1秒前
浮游应助wangjiewen1109采纳,获得10
1秒前
群众完成签到,获得积分10
1秒前
Tomma完成签到,获得积分10
2秒前
kkm完成签到,获得积分10
2秒前
2秒前
2秒前
爆米花应助正无穷采纳,获得10
2秒前
小诗发布了新的文献求助10
2秒前
cxcx发布了新的文献求助10
2秒前
lily完成签到,获得积分10
2秒前
2秒前
Syyyyy完成签到,获得积分10
3秒前
3秒前
kekeke发布了新的文献求助10
4秒前
豆芽发布了新的文献求助10
5秒前
Janel发布了新的文献求助30
5秒前
Akim应助笨笨的以云采纳,获得10
5秒前
keyanzhang发布了新的文献求助10
6秒前
6秒前
Carlnye完成签到 ,获得积分10
6秒前
6秒前
冯俊驰完成签到,获得积分10
6秒前
深情安青应助zml采纳,获得10
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
CZ88完成签到 ,获得积分10
7秒前
8秒前
小周发布了新的文献求助20
8秒前
Qiqige应助Jodie采纳,获得10
8秒前
8秒前
杨19980625发布了新的文献求助10
9秒前
顾矜应助要减肥的冥采纳,获得10
10秒前
武雨珍发布了新的文献求助10
10秒前
wanci应助Janel采纳,获得80
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4885652
求助须知:如何正确求助?哪些是违规求助? 4170459
关于积分的说明 12941799
捐赠科研通 3931212
什么是DOI,文献DOI怎么找? 2156914
邀请新用户注册赠送积分活动 1175326
关于科研通互助平台的介绍 1079935