亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Sliding Dual-Window-Inspired Reconstruction Network for Hyperspectral Anomaly Detection

像素 滑动窗口协议 计算机科学 高光谱成像 人工智能 窗口(计算) 计算机视觉 块(置换群论) 迭代重建 感受野 异常检测 异常(物理) 模式识别(心理学) 数学 物理 几何学 凝聚态物理 操作系统
作者
Degang Wang,Lina Zhuang,Lianru Gao,Xu Sun,Xiaobin Zhao,Antonio Plaza
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:45
标识
DOI:10.1109/tgrs.2024.3351179
摘要

Hyperspectral anomaly detection (HAD) aims to identify anomalous objects that deviate from surrounding backgrounds in an unlabeled hyperspectral image (HSI). Most available neural networks that make use of the reconstruction error to perform HAD tend to fit both backgrounds and anomalies, resulting in small reconstruction errors for both and not being effective in separating targets from background. To address this issue, we develop DirectNet, a new background reconstruction network for HAD that seamlessly integrates a sliding dual-window model into a blind-block architecture. Concretely, DirectNet establishes an inner window within the network's receptive field by erasing the center block information, so that the content of the inner window remains invisible during the reconstruction of the central pixel. Additionally, the depth of our reconstruction network is adaptive to the size of the input image patch, ensuring that the network's receptive field aligns with the dimensions of the input patch. The receptive field outside the inner window is considered an outer window. This weakens the impact of anomalies on the reconstruction process, causing the reconstructed pixels to converge towards the background distribution in the outer window region. Consequently, the reconstructed HSI can be regarded as a pure background HSI, leading to further amplification of reconstruction errors for anomalous targets. This enhancement improves the discriminatory ability of DirectNet. Specifically, DirectNet solely utilizes the outer window information to predict/reconstruct the central pixel. As a result, when reconstructing pixels inside anomalous targets of different sizes, the targets primarily fall within the inner window. Comprehensive experiments (conducted on four datasets) demonstrate that DirectNet achieves competitive performance compared to other state-of-the-art detectors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Demon724完成签到,获得积分10
刚刚
htc1996完成签到,获得积分10
3秒前
lin完成签到 ,获得积分10
9秒前
牛油果完成签到,获得积分10
13秒前
25秒前
26秒前
TJ发布了新的文献求助10
32秒前
kekeke777完成签到 ,获得积分10
32秒前
TEMPO发布了新的文献求助10
32秒前
oleskarabach发布了新的文献求助10
32秒前
34秒前
Ru完成签到 ,获得积分10
38秒前
TEMPO完成签到,获得积分10
39秒前
充电宝应助科研通管家采纳,获得10
40秒前
归去来兮应助科研通管家采纳,获得10
40秒前
CipherSage应助科研通管家采纳,获得10
40秒前
维奈克拉应助科研通管家采纳,获得20
40秒前
40秒前
45秒前
47秒前
54秒前
George完成签到,获得积分10
1分钟前
陈文学完成签到,获得积分10
1分钟前
1分钟前
情红锐完成签到,获得积分10
1分钟前
陈文学发布了新的文献求助10
1分钟前
1分钟前
今后应助情红锐采纳,获得10
1分钟前
大恐龙的噗噗完成签到,获得积分10
1分钟前
Sunziy完成签到,获得积分10
1分钟前
oleskarabach发布了新的文献求助10
1分钟前
1分钟前
1分钟前
cy完成签到 ,获得积分10
1分钟前
1分钟前
肉肉完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
meimei完成签到 ,获得积分0
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639533
求助须知:如何正确求助?哪些是违规求助? 4748853
关于积分的说明 15006598
捐赠科研通 4797713
什么是DOI,文献DOI怎么找? 2563735
邀请新用户注册赠送积分活动 1522691
关于科研通互助平台的介绍 1482394