Sliding Dual-Window-Inspired Reconstruction Network for Hyperspectral Anomaly Detection

像素 滑动窗口协议 计算机科学 高光谱成像 人工智能 窗口(计算) 计算机视觉 块(置换群论) 迭代重建 感受野 异常检测 异常(物理) 模式识别(心理学) 数学 物理 操作系统 凝聚态物理 几何学
作者
Degang Wang,Lina Zhuang,Lianru Gao,Xu Sun,Xiaobin Zhao,Antonio Plaza
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:20
标识
DOI:10.1109/tgrs.2024.3351179
摘要

Hyperspectral anomaly detection (HAD) aims to identify anomalous objects that deviate from surrounding backgrounds in an unlabeled hyperspectral image (HSI). Most available neural networks that make use of the reconstruction error to perform HAD tend to fit both backgrounds and anomalies, resulting in small reconstruction errors for both and not being effective in separating targets from background. To address this issue, we develop DirectNet, a new background reconstruction network for HAD that seamlessly integrates a sliding dual-window model into a blind-block architecture. Concretely, DirectNet establishes an inner window within the network's receptive field by erasing the center block information, so that the content of the inner window remains invisible during the reconstruction of the central pixel. Additionally, the depth of our reconstruction network is adaptive to the size of the input image patch, ensuring that the network's receptive field aligns with the dimensions of the input patch. The receptive field outside the inner window is considered an outer window. This weakens the impact of anomalies on the reconstruction process, causing the reconstructed pixels to converge towards the background distribution in the outer window region. Consequently, the reconstructed HSI can be regarded as a pure background HSI, leading to further amplification of reconstruction errors for anomalous targets. This enhancement improves the discriminatory ability of DirectNet. Specifically, DirectNet solely utilizes the outer window information to predict/reconstruct the central pixel. As a result, when reconstructing pixels inside anomalous targets of different sizes, the targets primarily fall within the inner window. Comprehensive experiments (conducted on four datasets) demonstrate that DirectNet achieves competitive performance compared to other state-of-the-art detectors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luym完成签到,获得积分10
刚刚
Anthony完成签到,获得积分10
刚刚
1秒前
徐丹枫发布了新的文献求助10
2秒前
小呆瓜与鱼完成签到,获得积分10
2秒前
东方三问发布了新的文献求助10
3秒前
XWKYG完成签到,获得积分10
3秒前
大力南风发布了新的文献求助10
3秒前
4秒前
4秒前
5秒前
相识发布了新的文献求助10
5秒前
善学以致用应助Lucille采纳,获得10
5秒前
xiaohunagya发布了新的文献求助10
5秒前
6秒前
李李发布了新的文献求助10
7秒前
超级大饼完成签到,获得积分10
7秒前
john发布了新的文献求助20
7秒前
7秒前
8秒前
Singularity发布了新的文献求助10
8秒前
9秒前
英俊延恶发布了新的文献求助10
10秒前
CH发布了新的文献求助10
12秒前
15秒前
15秒前
大力南风完成签到,获得积分10
15秒前
12完成签到,获得积分10
16秒前
慕青应助Ann采纳,获得10
16秒前
dxh发布了新的文献求助10
16秒前
17秒前
相识完成签到,获得积分10
17秒前
zhuxing完成签到 ,获得积分10
18秒前
搜集达人应助李李采纳,获得10
18秒前
19秒前
LX完成签到,获得积分10
19秒前
深情安青应助以太采纳,获得10
20秒前
20秒前
研友_Z6QEAn发布了新的文献求助10
20秒前
zyyy发布了新的文献求助10
20秒前
高分求助中
System in Systemic Functional Linguistics A System-based Theory of Language 1000
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Essentials of thematic analysis 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3116951
求助须知:如何正确求助?哪些是违规求助? 2766712
关于积分的说明 7688444
捐赠科研通 2422175
什么是DOI,文献DOI怎么找? 1286086
科研通“疑难数据库(出版商)”最低求助积分说明 620218
版权声明 599837