Sliding Dual-Window-Inspired Reconstruction Network for Hyperspectral Anomaly Detection

像素 滑动窗口协议 计算机科学 高光谱成像 人工智能 窗口(计算) 计算机视觉 块(置换群论) 迭代重建 感受野 异常检测 异常(物理) 模式识别(心理学) 数学 物理 几何学 凝聚态物理 操作系统
作者
Degang Wang,Lina Zhuang,Lianru Gao,Xu Sun,Xiaobin Zhao,Antonio Plaza
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:45
标识
DOI:10.1109/tgrs.2024.3351179
摘要

Hyperspectral anomaly detection (HAD) aims to identify anomalous objects that deviate from surrounding backgrounds in an unlabeled hyperspectral image (HSI). Most available neural networks that make use of the reconstruction error to perform HAD tend to fit both backgrounds and anomalies, resulting in small reconstruction errors for both and not being effective in separating targets from background. To address this issue, we develop DirectNet, a new background reconstruction network for HAD that seamlessly integrates a sliding dual-window model into a blind-block architecture. Concretely, DirectNet establishes an inner window within the network's receptive field by erasing the center block information, so that the content of the inner window remains invisible during the reconstruction of the central pixel. Additionally, the depth of our reconstruction network is adaptive to the size of the input image patch, ensuring that the network's receptive field aligns with the dimensions of the input patch. The receptive field outside the inner window is considered an outer window. This weakens the impact of anomalies on the reconstruction process, causing the reconstructed pixels to converge towards the background distribution in the outer window region. Consequently, the reconstructed HSI can be regarded as a pure background HSI, leading to further amplification of reconstruction errors for anomalous targets. This enhancement improves the discriminatory ability of DirectNet. Specifically, DirectNet solely utilizes the outer window information to predict/reconstruct the central pixel. As a result, when reconstructing pixels inside anomalous targets of different sizes, the targets primarily fall within the inner window. Comprehensive experiments (conducted on four datasets) demonstrate that DirectNet achieves competitive performance compared to other state-of-the-art detectors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tracy发布了新的文献求助10
1秒前
大渡河完成签到,获得积分10
1秒前
萧时完成签到 ,获得积分10
1秒前
1秒前
佳雪儿发布了新的文献求助30
3秒前
3秒前
坤坤探花发布了新的文献求助10
5秒前
5秒前
5秒前
fleurie发布了新的文献求助10
5秒前
微血管完成签到,获得积分10
5秒前
5秒前
6秒前
vivi完成签到,获得积分0
6秒前
量子星尘发布了新的文献求助10
6秒前
jewel9发布了新的文献求助10
6秒前
zl987发布了新的文献求助10
6秒前
俱乐部完成签到,获得积分10
7秒前
7秒前
健壮听露发布了新的文献求助10
7秒前
胖胖发布了新的文献求助10
7秒前
loong应助Felix0917采纳,获得20
8秒前
8秒前
快乐科研完成签到,获得积分10
9秒前
Xxil发布了新的文献求助10
9秒前
xiaoming发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
10秒前
今后应助有颗柚子采纳,获得10
10秒前
小鱼干儿发布了新的文献求助10
11秒前
哇哈哈发布了新的文献求助10
11秒前
11秒前
苗苗发布了新的文献求助10
12秒前
无花果应助薯片采纳,获得10
12秒前
卡痰的长颈鹿完成签到,获得积分10
13秒前
念l完成签到 ,获得积分10
13秒前
adi完成签到,获得积分10
13秒前
imyunxu完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728534
求助须知:如何正确求助?哪些是违规求助? 5313250
关于积分的说明 15314452
捐赠科研通 4875726
什么是DOI,文献DOI怎么找? 2618947
邀请新用户注册赠送积分活动 1568530
关于科研通互助平台的介绍 1525171