Sliding Dual-Window-Inspired Reconstruction Network for Hyperspectral Anomaly Detection

像素 滑动窗口协议 计算机科学 高光谱成像 人工智能 窗口(计算) 计算机视觉 块(置换群论) 迭代重建 感受野 异常检测 异常(物理) 模式识别(心理学) 数学 物理 几何学 凝聚态物理 操作系统
作者
Degang Wang,Lina Zhuang,Lianru Gao,Xu Sun,Xiaobin Zhao,Antonio Plaza
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:45
标识
DOI:10.1109/tgrs.2024.3351179
摘要

Hyperspectral anomaly detection (HAD) aims to identify anomalous objects that deviate from surrounding backgrounds in an unlabeled hyperspectral image (HSI). Most available neural networks that make use of the reconstruction error to perform HAD tend to fit both backgrounds and anomalies, resulting in small reconstruction errors for both and not being effective in separating targets from background. To address this issue, we develop DirectNet, a new background reconstruction network for HAD that seamlessly integrates a sliding dual-window model into a blind-block architecture. Concretely, DirectNet establishes an inner window within the network's receptive field by erasing the center block information, so that the content of the inner window remains invisible during the reconstruction of the central pixel. Additionally, the depth of our reconstruction network is adaptive to the size of the input image patch, ensuring that the network's receptive field aligns with the dimensions of the input patch. The receptive field outside the inner window is considered an outer window. This weakens the impact of anomalies on the reconstruction process, causing the reconstructed pixels to converge towards the background distribution in the outer window region. Consequently, the reconstructed HSI can be regarded as a pure background HSI, leading to further amplification of reconstruction errors for anomalous targets. This enhancement improves the discriminatory ability of DirectNet. Specifically, DirectNet solely utilizes the outer window information to predict/reconstruct the central pixel. As a result, when reconstructing pixels inside anomalous targets of different sizes, the targets primarily fall within the inner window. Comprehensive experiments (conducted on four datasets) demonstrate that DirectNet achieves competitive performance compared to other state-of-the-art detectors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
拼搏的凤完成签到,获得积分10
刚刚
1秒前
1秒前
哆啦小鱼完成签到 ,获得积分10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
Frank应助科研通管家采纳,获得10
2秒前
Frank应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
2秒前
Frank应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得20
2秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
ljr完成签到,获得积分10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
iOhyeye23完成签到 ,获得积分10
3秒前
mengtingmei应助科研通管家采纳,获得10
3秒前
你好啊完成签到,获得积分10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
Frank应助科研通管家采纳,获得10
3秒前
Frank应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
kaka091完成签到,获得积分10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
Frank应助科研通管家采纳,获得10
4秒前
秦汉的抉择完成签到,获得积分10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
4秒前
1101592875发布了新的文献求助10
5秒前
Sugarhm完成签到,获得积分10
5秒前
汪汪队立大功完成签到,获得积分10
5秒前
兴奋小丸子完成签到,获得积分10
6秒前
摇摆小狗发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
DaSheng完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671659
求助须知:如何正确求助?哪些是违规求助? 4921045
关于积分的说明 15135488
捐赠科研通 4830525
什么是DOI,文献DOI怎么找? 2587125
邀请新用户注册赠送积分活动 1540733
关于科研通互助平台的介绍 1499131