茉莉酸
茉莉酸甲酯
生物
亚精胺
内生
转录因子
脱落酸
生物化学
水杨酸
酶
基因
作者
Chunyu Shang,Xiaoyan Liu,Guo Chen,Hao Zheng,Abid Khan,Guobin Li,Xiaohui Hu
摘要
Abstract Saline–alkali is an important abiotic stressor influencing tomato production. Exogenous methyl jasmonate (MeJA) is well known to increase tomato resistance to a variety of stresses, although its exact mechanism is yet unknown. In this study we confirmed that 22.5 μmol/l MeJA could significantly improve the saline–alkali stress resistance of tomato. Saline–alkali (300 mM) stress increased the endogenous MeJA and jasmonic acid (JA) contents of tomato by 18.8 and 13.4%, respectively. Exogenous application of 22.5 μmol/l MeJA increased the endogenous MeJA and JA contents in tomato by 15.2 and 15.9%, respectively. Furthermore, we found an important transcription factor, SlWRKY80, which responded to MeJA, and constructed its overexpressing and knockout lines through genetic transformation. It was found that SlWRKY80 actively regulated tomato resistance to saline–alkali stress, and the spraying of exogenous MeJA (22.5 μmol/l) reduced the sensitivity of SlWRKY80 knockout lines to saline–alkali stress. The SlWRKY80 protein directly combines with the promoter of SlSPDS2 and SlNHX4 to positively regulate the transcription of SlSPDS2 and SlNHX4, thereby promoting the synthesis of spermidine and Na+/K+ homeostasis, actively regulating saline–alkali stress. The augmentation of JA content led to a notable reduction of 70.6% in the expression of SlJAZ1, and the release of the SlWRKY80 protein interacting with SlJAZ1. In conclusion, we revealed the mechanism of exogenous MeJA in tomato stress resistance through multiple metabolic pathways, elucidated that exogenous MeJA further promotes spermidine synthesis and Na+/K+ homeostasis by activating the expression of SlWRKY80, which provides a new theoretical basis for the study of the JA stress resistance mechanism and the production of tomato.
科研通智能强力驱动
Strongly Powered by AbleSci AI