作者
Baiping He,Zihao Liu,Xin Wang,Minghui Li,Xiangui Lin,Qingqing Xiao,Junli Hu
摘要
As emerging environmental pollutants, micro(nano)plastics (MPs) like polyethylene terephthalate (PET) and low-density polyethylene (LDPE) have adverse effects on terrestrial biota and ecosystem function. However, the performance and roles of soil arbuscular mycorrhizal (AM) fungi in MPs-contaminated vegetable fields are poorly understood. Thus, a 120-day pot experiment was conducted to test the impacts of two input levels of either PET (~13 μm) or LDPE (~500 nm) on AM fungal diversity and pepper (Capsicum annuum L.) growth in two farmland soils collected from Nanjing (NJ) and Chongqing (CQ), respectively. In the vast majority of cases, 1 % rather than 0.1 % of both MPs greatly decreased the observed richness, Shannon and Simpson's indices, and Pielou's evenness of AM fungi, and decreased mycorrhizal colonization, root and shoot biomasses, fruit yield, and leaf superoxide dismutase, peroxidase, and catalase activities of pepper, while increased leaf malondialdehyde content. From day 40 to 120, the inhibition of either diversity or vitality of AM fungi by 1 % and 0.1 % of MPs gradually increased and weakened, respectively. Compared with PET, LDPE with substantially smaller particle size was more toxic to mycorrhization at day 40, but no longer at day 120. Almost all plant parameters significantly correlated to mycorrhizal colonization, which significantly correlated to both Shannon and Simpson's indices of AM fungi, and soil pH, available P and K concentrations, and alkaline phosphatase activity. All diversity indices of AM fungi clearly negatively correlated to soil pH from 4.4 to 5.6 for the NJ soil and from 5.3 to 6.5 for the CQ soil, and also positively to mineral N and negatively to available P concentrations for the NJ and CQ soils, respectively. Thus, the study emphasized that high input of MPs significantly inhibited soil AM fungal diversity and vitality and thereby vegetable growth via changing soil pH and major nutrient availability.