Contrastive deep convolutional transform k-means clustering

聚类分析 计算机科学 人工智能 自编码 深度学习 特征学习 模式识别(心理学) 水准点(测量) 嵌入 编码器 判别式 无监督学习 相关聚类 卷积神经网络 机器学习 地理 操作系统 大地测量学
作者
Anurag Goel,Angshul Majumdar
出处
期刊:Information Sciences [Elsevier BV]
卷期号:661: 120191-120191 被引量:2
标识
DOI:10.1016/j.ins.2024.120191
摘要

Deep clustering has gained the immense attention of researchers in recent years. Most of the deep clustering approaches are based on auto-encoders which consist of an encoder-decoder framework. In these approaches, the clustering module is embedded in the latent space of auto-encoders. The auto-encoder based deep clustering approaches require learning of encoder weights as well as decoder weights. Moreover, due to the unsupervised learning strategy, these approaches lack in learning the discriminative features that can help in generating better clusters. This work introduces a novel clustering approach based on Contrastive Deep Convolutional Transform Learning (DCTL) framework. The proposed approach mitigates the problem of lack of supervision in DCTL based K-means clustering approach by embedding the contrastive learning into it. To embed the contrastive learning, the positive pairs and negative pairs of data samples are generated by reconstructing the data samples from the DCTL learnt representation itself and thus eliminates the requirement of data augmentation for embedding contrastive learning. The experimental results on several benchmark facial images datasets demonstrate that the proposed framework gives better clustering performance as compared to the current state-of-the-art deep clustering approaches especially in data constrained scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助30
刚刚
Orange应助麻瓜采纳,获得10
刚刚
Joyce发布了新的文献求助10
1秒前
guoguo1119发布了新的文献求助10
1秒前
喵呜完成签到,获得积分10
2秒前
北北完成签到,获得积分10
2秒前
gk完成签到,获得积分20
3秒前
3秒前
4秒前
核桃应助slowfloat采纳,获得20
4秒前
JamesPei应助B站萧亚轩采纳,获得10
5秒前
搞怪雁风完成签到,获得积分10
5秒前
刘茗元发布了新的文献求助20
5秒前
5秒前
5秒前
5秒前
6秒前
上官若男应助wzc采纳,获得10
7秒前
arzw完成签到,获得积分10
7秒前
传统的妖妖完成签到,获得积分20
9秒前
脑洞疼应助why采纳,获得10
9秒前
搞怪雁风发布了新的文献求助10
10秒前
江湖护卫舰应助zzyluckyzoe采纳,获得10
10秒前
一叶知秋应助杜晓雯采纳,获得10
10秒前
科研通AI5应助凌兰采纳,获得30
11秒前
11秒前
11秒前
Akim应助潘小蓝采纳,获得10
11秒前
未晞发布了新的文献求助10
12秒前
杨家欢完成签到 ,获得积分10
13秒前
14秒前
14秒前
VDC发布了新的文献求助10
14秒前
14秒前
Ayu王完成签到,获得积分10
14秒前
15秒前
所所应助gk采纳,获得10
15秒前
maodou发布了新的文献求助10
16秒前
17秒前
徐紫梦完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4940989
求助须知:如何正确求助?哪些是违规求助? 4207022
关于积分的说明 13076328
捐赠科研通 3985793
什么是DOI,文献DOI怎么找? 2182277
邀请新用户注册赠送积分活动 1197870
关于科研通互助平台的介绍 1110197