聚类分析
计算机科学
人工智能
自编码
深度学习
特征学习
模式识别(心理学)
水准点(测量)
嵌入
编码器
判别式
无监督学习
相关聚类
卷积神经网络
机器学习
地理
操作系统
大地测量学
作者
Anurag Goel,Angshul Majumdar
标识
DOI:10.1016/j.ins.2024.120191
摘要
Deep clustering has gained the immense attention of researchers in recent years. Most of the deep clustering approaches are based on auto-encoders which consist of an encoder-decoder framework. In these approaches, the clustering module is embedded in the latent space of auto-encoders. The auto-encoder based deep clustering approaches require learning of encoder weights as well as decoder weights. Moreover, due to the unsupervised learning strategy, these approaches lack in learning the discriminative features that can help in generating better clusters. This work introduces a novel clustering approach based on Contrastive Deep Convolutional Transform Learning (DCTL) framework. The proposed approach mitigates the problem of lack of supervision in DCTL based K-means clustering approach by embedding the contrastive learning into it. To embed the contrastive learning, the positive pairs and negative pairs of data samples are generated by reconstructing the data samples from the DCTL learnt representation itself and thus eliminates the requirement of data augmentation for embedding contrastive learning. The experimental results on several benchmark facial images datasets demonstrate that the proposed framework gives better clustering performance as compared to the current state-of-the-art deep clustering approaches especially in data constrained scenarios.
科研通智能强力驱动
Strongly Powered by AbleSci AI