ASTRA: Atomic Surface Transformations for Radiotherapy Quality Assurance

工作流程 分割 放射治疗 放射治疗计划 质量保证 计算机科学 医学物理学 阿斯特拉 人工智能 医学 放射科 数据库 物理 外部质量评估 病理 量子力学
作者
Amith Kamath,Robert Poel,Jonas Willmann,Ekin Ermiş,Nicolaus Andratschke,Mauricio Reyes
标识
DOI:10.1109/embc40787.2023.10341062
摘要

Treatment for glioblastoma, an aggressive brain tumour usually relies on radiotherapy. This involves planning how to achieve the desired radiation dose distribution, which is known as treatment planning. Treatment planning is impacted by human errors, inter-expert variability in segmenting (or outlining) the tumor target and organs-at-risk, and differences in segmentation protocols. Erroneous segmentations translate to erroneous dose distributions, and hence sub-optimal clinical outcomes. Reviewing segmentations is time-intensive, significantly reduces the efficiency of radiation oncology teams, and hence restricts timely radiotherapy interventions to limit tumor growth. Moreover, to date, radiation oncologists review and correct segmentations without information on how potential corrections might affect radiation dose distributions, leading to an ineffective and suboptimal segmentation correction workflow. In this paper, we introduce an automated deep-learning based method: atomic surface transformations for radiotherapy quality assurance (ASTRA), that predicts the potential impact of local segmentation variations on radiotherapy dose predictions, thereby serving as an effective dose-aware sensitivity map of segmentation variations. On a dataset of 100 glioblastoma patients, we show how the proposed approach enables assessment and visualization of areas of organs-at-risk being most susceptible to dose changes, providing clinicians with a dose-informed mechanism to review and correct segmentations for radiation therapy planning. These initial results suggest strong potential for employing such methods within a broader automated quality assurance system in the radiotherapy planning workflow. Code to reproduce this is available at https://github.com/amithjkamath/astraClinical Relevance: ASTRA shows promise in indicating what regions of the OARs are more likely to impact the distribution of radiation dose.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
英吉利25发布了新的文献求助10
1秒前
xcxcxcily完成签到 ,获得积分10
1秒前
波波冰完成签到,获得积分20
3秒前
章鱼饺子给章鱼饺子的求助进行了留言
3秒前
曾经的慕灵完成签到,获得积分10
3秒前
氯雷他定发布了新的文献求助10
4秒前
6秒前
7秒前
8秒前
斯文败类应助远不止这些采纳,获得10
9秒前
9秒前
小满完成签到 ,获得积分10
10秒前
11秒前
BowieHuang应助健壮的紫萍采纳,获得10
11秒前
11秒前
HEYATIAN完成签到 ,获得积分10
11秒前
娃哈哈哈发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
12秒前
在水一方应助炙热香采纳,获得10
12秒前
LMZ发布了新的文献求助30
13秒前
13秒前
无情飞松发布了新的文献求助10
13秒前
耶耶耶完成签到,获得积分10
14秒前
12333发布了新的文献求助10
15秒前
15秒前
16秒前
16秒前
Ray-Q发布了新的文献求助10
16秒前
16秒前
寒冷毛衣发布了新的文献求助10
17秒前
SciGPT应助机智冰姬采纳,获得10
17秒前
Twonej应助科研通管家采纳,获得30
18秒前
科目三应助科研通管家采纳,获得10
18秒前
科目三应助科研通管家采纳,获得10
18秒前
完美世界应助科研通管家采纳,获得10
18秒前
NN应助科研通管家采纳,获得10
18秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5704982
求助须知:如何正确求助?哪些是违规求助? 5160109
关于积分的说明 15243509
捐赠科研通 4858841
什么是DOI,文献DOI怎么找? 2607448
邀请新用户注册赠送积分活动 1558519
关于科研通互助平台的介绍 1516177