ASTRA: Atomic Surface Transformations for Radiotherapy Quality Assurance

工作流程 分割 放射治疗 放射治疗计划 质量保证 计算机科学 医学物理学 阿斯特拉 人工智能 医学 放射科 数据库 物理 外部质量评估 病理 量子力学
作者
Amith Kamath,Robert Poel,Jonas Willmann,Ekin Ermiş,Nicolaus Andratschke,Mauricio Reyes
标识
DOI:10.1109/embc40787.2023.10341062
摘要

Treatment for glioblastoma, an aggressive brain tumour usually relies on radiotherapy. This involves planning how to achieve the desired radiation dose distribution, which is known as treatment planning. Treatment planning is impacted by human errors, inter-expert variability in segmenting (or outlining) the tumor target and organs-at-risk, and differences in segmentation protocols. Erroneous segmentations translate to erroneous dose distributions, and hence sub-optimal clinical outcomes. Reviewing segmentations is time-intensive, significantly reduces the efficiency of radiation oncology teams, and hence restricts timely radiotherapy interventions to limit tumor growth. Moreover, to date, radiation oncologists review and correct segmentations without information on how potential corrections might affect radiation dose distributions, leading to an ineffective and suboptimal segmentation correction workflow. In this paper, we introduce an automated deep-learning based method: atomic surface transformations for radiotherapy quality assurance (ASTRA), that predicts the potential impact of local segmentation variations on radiotherapy dose predictions, thereby serving as an effective dose-aware sensitivity map of segmentation variations. On a dataset of 100 glioblastoma patients, we show how the proposed approach enables assessment and visualization of areas of organs-at-risk being most susceptible to dose changes, providing clinicians with a dose-informed mechanism to review and correct segmentations for radiation therapy planning. These initial results suggest strong potential for employing such methods within a broader automated quality assurance system in the radiotherapy planning workflow. Code to reproduce this is available at https://github.com/amithjkamath/astraClinical Relevance: ASTRA shows promise in indicating what regions of the OARs are more likely to impact the distribution of radiation dose.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
jun2008x完成签到 ,获得积分10
2秒前
zhenghua完成签到,获得积分20
3秒前
方法法国衣服头发完成签到,获得积分10
5秒前
llll完成签到 ,获得积分10
6秒前
6秒前
7秒前
梓辰完成签到 ,获得积分10
7秒前
nakl完成签到,获得积分10
9秒前
CT完成签到,获得积分20
10秒前
呵呵应助XZC采纳,获得10
11秒前
12秒前
困屁鱼完成签到 ,获得积分10
13秒前
123完成签到,获得积分10
14秒前
MCRong应助白华苍松采纳,获得20
15秒前
经海亦发布了新的文献求助10
15秒前
orixero应助Chloe采纳,获得10
18秒前
L3完成签到,获得积分10
18秒前
19秒前
Soleil发布了新的文献求助10
20秒前
20秒前
Luelin完成签到 ,获得积分10
21秒前
隐形曼青应助bee采纳,获得10
22秒前
经海亦完成签到,获得积分10
22秒前
cao_bq发布了新的文献求助10
23秒前
24秒前
热心梦安完成签到 ,获得积分10
26秒前
26秒前
呆瓜完成签到,获得积分10
27秒前
Yang22完成签到,获得积分10
27秒前
yuancw完成签到 ,获得积分10
28秒前
念姬完成签到 ,获得积分10
29秒前
29秒前
YXHTCM完成签到,获得积分10
29秒前
嘻嘻嘻完成签到,获得积分10
29秒前
丘比特应助DCC采纳,获得10
30秒前
哈哈哈哈完成签到 ,获得积分10
30秒前
Soleil完成签到,获得积分20
32秒前
科研通AI2S应助super chan采纳,获得10
32秒前
甜甜信封完成签到,获得积分10
33秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5378758
求助须知:如何正确求助?哪些是违规求助? 4503204
关于积分的说明 14015274
捐赠科研通 4411911
什么是DOI,文献DOI怎么找? 2423541
邀请新用户注册赠送积分活动 1416486
关于科研通互助平台的介绍 1393925