ASTRA: Atomic Surface Transformations for Radiotherapy Quality Assurance

工作流程 分割 放射治疗 放射治疗计划 质量保证 计算机科学 医学物理学 阿斯特拉 人工智能 医学 放射科 数据库 物理 外部质量评估 病理 量子力学
作者
Amith Kamath,Robert Poel,Jonas Willmann,Ekin Ermiş,Nicolaus Andratschke,Mauricio Reyes
标识
DOI:10.1109/embc40787.2023.10341062
摘要

Treatment for glioblastoma, an aggressive brain tumour usually relies on radiotherapy. This involves planning how to achieve the desired radiation dose distribution, which is known as treatment planning. Treatment planning is impacted by human errors, inter-expert variability in segmenting (or outlining) the tumor target and organs-at-risk, and differences in segmentation protocols. Erroneous segmentations translate to erroneous dose distributions, and hence sub-optimal clinical outcomes. Reviewing segmentations is time-intensive, significantly reduces the efficiency of radiation oncology teams, and hence restricts timely radiotherapy interventions to limit tumor growth. Moreover, to date, radiation oncologists review and correct segmentations without information on how potential corrections might affect radiation dose distributions, leading to an ineffective and suboptimal segmentation correction workflow. In this paper, we introduce an automated deep-learning based method: atomic surface transformations for radiotherapy quality assurance (ASTRA), that predicts the potential impact of local segmentation variations on radiotherapy dose predictions, thereby serving as an effective dose-aware sensitivity map of segmentation variations. On a dataset of 100 glioblastoma patients, we show how the proposed approach enables assessment and visualization of areas of organs-at-risk being most susceptible to dose changes, providing clinicians with a dose-informed mechanism to review and correct segmentations for radiation therapy planning. These initial results suggest strong potential for employing such methods within a broader automated quality assurance system in the radiotherapy planning workflow. Code to reproduce this is available at https://github.com/amithjkamath/astraClinical Relevance: ASTRA shows promise in indicating what regions of the OARs are more likely to impact the distribution of radiation dose.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小田应助lj采纳,获得10
2秒前
迷路代玉发布了新的文献求助10
2秒前
昔我往矣完成签到 ,获得积分10
2秒前
2秒前
2秒前
英俊的铭应助闪闪涫采纳,获得10
2秒前
科研通AI6应助高玉峰采纳,获得10
3秒前
木头完成签到,获得积分10
3秒前
4秒前
4秒前
今后应助荒野风采纳,获得10
5秒前
友好从凝完成签到,获得积分10
5秒前
小马甲应助romeo采纳,获得10
5秒前
我是老大应助romeo采纳,获得10
5秒前
科目三应助romeo采纳,获得10
5秒前
上官若男应助romeo采纳,获得10
5秒前
慕青应助romeo采纳,获得10
5秒前
SciGPT应助romeo采纳,获得30
5秒前
英俊的铭应助romeo采纳,获得10
6秒前
搜集达人应助romeo采纳,获得10
6秒前
Orange应助romeo采纳,获得10
6秒前
桐桐应助romeo采纳,获得10
6秒前
Sevi完成签到,获得积分10
6秒前
高贵的雅山完成签到,获得积分10
6秒前
香蕉觅云应助li采纳,获得10
6秒前
pu完成签到 ,获得积分10
6秒前
7秒前
小么完成签到 ,获得积分10
7秒前
英姑应助顾建瑜采纳,获得10
7秒前
lcmsh08发布了新的文献求助10
8秒前
慕青应助美丽的韩小姐采纳,获得10
8秒前
www发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
王智勇完成签到,获得积分10
9秒前
薯条发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
李爱国应助刻苦向梦采纳,获得10
12秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615218
求助须知:如何正确求助?哪些是违规求助? 4700091
关于积分的说明 14906605
捐赠科研通 4741474
什么是DOI,文献DOI怎么找? 2547964
邀请新用户注册赠送积分活动 1511725
关于科研通互助平台的介绍 1473781