亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

PAFormer: Anomaly Detection of Time Series With Parallel-Attention Transformer

计算机科学 异常检测 规范化(社会学) 人工智能 数据挖掘 变压器 数据点 机器学习 模式识别(心理学) 工程类 电压 社会学 人类学 电气工程
作者
Ningning Bai,Xiaofeng Wang,Ruidong Han,Q. Wang,Zinian Liu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (2): 3315-3328 被引量:5
标识
DOI:10.1109/tnnls.2023.3337876
摘要

Time-series anomaly detection is a critical task with significant impact as it serves a pivotal role in the field of data mining and quality management. Current anomaly detection methods are typically based on reconstruction or forecasting algorithms, as these methods have the capability to learn compressed data representations and model time dependencies. However, most methods rely on learning normal distribution patterns, which can be difficult to achieve in real-world engineering applications. Furthermore, real-world time-series data is highly imbalanced, with a severe lack of representative samples for anomalous data, which can lead to model learning failure. In this article, we propose a novel end-to-end unsupervised framework called the parallel-attention transformer (PAFormer), which discriminates anomalies by modeling both the global characteristics and local patterns of time series. Specifically, we construct parallel-attention (PA), which includes two core modules: the global enhanced representation module (GERM) and the local perception module (LPM). GERM consists of two pattern units and a normalization module, with attention weights that indicate the relationship of each data point to the whole series (global). Due to the rarity of anomalous points, they have strong associations with adjacent data points. LPM is composed of a learnable Laplace kernel function that learns the neighborhood relevancies through the distributional properties of the kernel function (local). We employ the PA to learn the global-local distributional differences for each data point, which enables us to discriminate anomalies. Finally, we propose a two-stage adversarial loss to optimize the model. We conduct experiments on five public benchmark datasets (real-world datasets) and one synthetic dataset. The results show that PAFormer outperforms state-of-the-art baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助Akitten采纳,获得10
20秒前
上官若男应助紫色奶萨采纳,获得10
39秒前
老石完成签到 ,获得积分10
40秒前
NexusExplorer应助科研通管家采纳,获得10
50秒前
55秒前
紫色奶萨发布了新的文献求助10
58秒前
紫色奶萨完成签到,获得积分10
1分钟前
华仔应助怕孤单的思雁采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
Akitten发布了新的文献求助10
1分钟前
SYLH应助怕孤单的思雁采纳,获得10
1分钟前
1分钟前
科研小白完成签到 ,获得积分10
1分钟前
2分钟前
活力半凡发布了新的文献求助10
2分钟前
2分钟前
婼汐完成签到 ,获得积分10
2分钟前
活力半凡完成签到,获得积分10
2分钟前
Cathy完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
怕孤单的思雁完成签到,获得积分10
3分钟前
闫雪发布了新的文献求助10
3分钟前
gszy1975完成签到,获得积分10
4分钟前
TiYooY完成签到,获得积分10
4分钟前
Benhnhk21发布了新的文献求助10
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得50
4分钟前
5433完成签到 ,获得积分10
5分钟前
jiangjiang完成签到 ,获得积分10
6分钟前
吱吱草莓派完成签到 ,获得积分10
6分钟前
6分钟前
小二郎应助科研通管家采纳,获得10
6分钟前
6分钟前
6分钟前
宝贝丫头完成签到 ,获得积分10
7分钟前
英姑应助背后的鞋垫采纳,获得10
7分钟前
桐桐应助Benhnhk21采纳,获得10
7分钟前
Dave发布了新的文献求助10
8分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990298
求助须知:如何正确求助?哪些是违规求助? 3532146
关于积分的说明 11256481
捐赠科研通 3271042
什么是DOI,文献DOI怎么找? 1805197
邀请新用户注册赠送积分活动 882302
科研通“疑难数据库(出版商)”最低求助积分说明 809234