Demand forecasting of shared bicycles based on combined deep learning models

计算机科学 调度(生产过程) 共享单车 人工智能 人工神经网络 预测建模 深度学习 机器学习 运筹学 运输工程 运营管理 工程类 经济
作者
Changxi Ma,Tao Liu
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier]
卷期号:635: 129492-129492
标识
DOI:10.1016/j.physa.2023.129492
摘要

The combined deep learning model for bicycle sharing demand prediction is designed to solve the "last 1 km" problem. At present, there are many companies providing bicycle sharing services at home and abroad, and how to dispatch shared bicycles more efficiently has become an important issue in traffic information research. Sometimes it is difficult to find shared bikes at the exit of some subway stations, along commercial streets, or under some office buildings, while sometimes there are mountains of shared bikes. Therefore, performing demand prediction of shared bikes can efficiently increase the scheduling efficiency of shared bikes, optimize the distribution of shared bikes, and provide more convenient travel services for users. Based on traffic flow prediction theory, this paper studies the spatial and temporal features of shared bicycles. The results show that factors such as time of day, season, weather, and temperature have an effect on the demand for bicycles. Based on the above-mentioned characteristic influencing factors, a CNN-LSTM-Attention algorithm is proposed to forecast the demand for shared bicycles in this paper. Firstly, a CNN-LSTM-Attention model is constructed to predict the demand for bicycle sharing based on the open-source data provided by Capital Bicycle Company. Secondly, it is proved that CNN-LSTM-Attention model is better than 1DCNN-LSTM-Attention, CNN-LSTM, LSTM, SVR-based model and BP neural network model in the precision prediction of shared bicycles, in which the prediction accuracy reaches 97.50%, which confirms the practicality and effectiveness of the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Henry发布了新的文献求助20
1秒前
无味完成签到 ,获得积分10
1秒前
123关闭了123文献求助
2秒前
圆滑的铁勺完成签到,获得积分10
2秒前
3秒前
tjy发布了新的文献求助10
3秒前
大方的冥王星完成签到 ,获得积分10
4秒前
光亮面包发布了新的文献求助10
4秒前
科研通AI2S应助77采纳,获得10
5秒前
5秒前
科研通AI2S应助qy97采纳,获得10
6秒前
7秒前
蔚蓝天空发布了新的文献求助10
7秒前
研友_VZG7GZ应助林云夕采纳,获得10
8秒前
10秒前
zyq发布了新的文献求助10
10秒前
12秒前
一一完成签到,获得积分10
13秒前
内向秋寒完成签到,获得积分10
13秒前
leo0531完成签到,获得积分10
14秒前
luckyalias完成签到 ,获得积分10
15秒前
慵懒猫发布了新的文献求助10
15秒前
纪富完成签到 ,获得积分10
16秒前
17秒前
魔法披风完成签到,获得积分10
17秒前
张才豪发布了新的文献求助10
18秒前
西瓜驳回了Hello应助
19秒前
21秒前
阔达荣轩发布了新的文献求助150
21秒前
22秒前
soccer13完成签到,获得积分10
22秒前
23秒前
张婷婷应助lcc采纳,获得10
24秒前
tjy完成签到,获得积分20
25秒前
zhukeqinag发布了新的文献求助10
26秒前
wenyi完成签到,获得积分10
26秒前
27秒前
CodeCraft应助LSY采纳,获得10
27秒前
科研通AI2S应助77采纳,获得10
28秒前
songnvshi发布了新的文献求助10
28秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141929
求助须知:如何正确求助?哪些是违规求助? 2792912
关于积分的说明 7804490
捐赠科研通 2449236
什么是DOI,文献DOI怎么找? 1303108
科研通“疑难数据库(出版商)”最低求助积分说明 626771
版权声明 601291