Demand forecasting of shared bicycles based on combined deep learning models

计算机科学 调度(生产过程) 共享单车 人工智能 人工神经网络 预测建模 深度学习 机器学习 运筹学 运输工程 运营管理 工程类 经济
作者
Changxi Ma,Tao Liu
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier BV]
卷期号:635: 129492-129492 被引量:7
标识
DOI:10.1016/j.physa.2023.129492
摘要

The combined deep learning model for bicycle sharing demand prediction is designed to solve the "last 1 km" problem. At present, there are many companies providing bicycle sharing services at home and abroad, and how to dispatch shared bicycles more efficiently has become an important issue in traffic information research. Sometimes it is difficult to find shared bikes at the exit of some subway stations, along commercial streets, or under some office buildings, while sometimes there are mountains of shared bikes. Therefore, performing demand prediction of shared bikes can efficiently increase the scheduling efficiency of shared bikes, optimize the distribution of shared bikes, and provide more convenient travel services for users. Based on traffic flow prediction theory, this paper studies the spatial and temporal features of shared bicycles. The results show that factors such as time of day, season, weather, and temperature have an effect on the demand for bicycles. Based on the above-mentioned characteristic influencing factors, a CNN-LSTM-Attention algorithm is proposed to forecast the demand for shared bicycles in this paper. Firstly, a CNN-LSTM-Attention model is constructed to predict the demand for bicycle sharing based on the open-source data provided by Capital Bicycle Company. Secondly, it is proved that CNN-LSTM-Attention model is better than 1DCNN-LSTM-Attention, CNN-LSTM, LSTM, SVR-based model and BP neural network model in the precision prediction of shared bicycles, in which the prediction accuracy reaches 97.50%, which confirms the practicality and effectiveness of the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
我来电了完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
思源应助翱翔的蚂蚁采纳,获得10
2秒前
科研通AI6应助徐昊雯采纳,获得10
3秒前
科研通AI5应助我爱乒乓球采纳,获得10
4秒前
4秒前
淡定的松子完成签到 ,获得积分10
4秒前
4秒前
游手好闲的咸鱼完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
6秒前
非常完成签到,获得积分10
6秒前
小水滴发布了新的文献求助10
6秒前
吕培森完成签到 ,获得积分10
6秒前
无聊的发箍完成签到,获得积分10
6秒前
Joey完成签到 ,获得积分10
6秒前
Tetrahydron发布了新的文献求助10
7秒前
7秒前
7秒前
田様应助cc采纳,获得10
8秒前
8秒前
元骑走之辣完成签到 ,获得积分10
8秒前
上官若男应助爱我不上火采纳,获得10
8秒前
9秒前
JamesPei应助生动的翠容采纳,获得10
9秒前
sesu完成签到,获得积分10
9秒前
byX发布了新的文献求助10
10秒前
eagle14835发布了新的文献求助10
10秒前
LEAOMIC发布了新的文献求助10
11秒前
风中尔蝶发布了新的文献求助10
11秒前
充电宝应助Laospakalfski采纳,获得10
11秒前
yuyuyuyuyuyuyu完成签到,获得积分10
11秒前
木木完成签到,获得积分10
11秒前
翱翔的蚂蚁完成签到,获得积分10
12秒前
12秒前
12秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603700
求助须知:如何正确求助?哪些是违规求助? 4012310
关于积分的说明 12423171
捐赠科研通 3692797
什么是DOI,文献DOI怎么找? 2035913
邀请新用户注册赠送积分活动 1068997
科研通“疑难数据库(出版商)”最低求助积分说明 953482