Demand forecasting of shared bicycles based on combined deep learning models

计算机科学 调度(生产过程) 共享单车 人工智能 人工神经网络 预测建模 深度学习 机器学习 运筹学 运输工程 运营管理 工程类 经济
作者
Changxi Ma,Tao Liu
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier]
卷期号:635: 129492-129492 被引量:7
标识
DOI:10.1016/j.physa.2023.129492
摘要

The combined deep learning model for bicycle sharing demand prediction is designed to solve the "last 1 km" problem. At present, there are many companies providing bicycle sharing services at home and abroad, and how to dispatch shared bicycles more efficiently has become an important issue in traffic information research. Sometimes it is difficult to find shared bikes at the exit of some subway stations, along commercial streets, or under some office buildings, while sometimes there are mountains of shared bikes. Therefore, performing demand prediction of shared bikes can efficiently increase the scheduling efficiency of shared bikes, optimize the distribution of shared bikes, and provide more convenient travel services for users. Based on traffic flow prediction theory, this paper studies the spatial and temporal features of shared bicycles. The results show that factors such as time of day, season, weather, and temperature have an effect on the demand for bicycles. Based on the above-mentioned characteristic influencing factors, a CNN-LSTM-Attention algorithm is proposed to forecast the demand for shared bicycles in this paper. Firstly, a CNN-LSTM-Attention model is constructed to predict the demand for bicycle sharing based on the open-source data provided by Capital Bicycle Company. Secondly, it is proved that CNN-LSTM-Attention model is better than 1DCNN-LSTM-Attention, CNN-LSTM, LSTM, SVR-based model and BP neural network model in the precision prediction of shared bicycles, in which the prediction accuracy reaches 97.50%, which confirms the practicality and effectiveness of the model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱静静应助烂漫的孤云采纳,获得50
刚刚
1秒前
1秒前
考拉发布了新的文献求助10
2秒前
十二完成签到 ,获得积分10
2秒前
2秒前
小李完成签到,获得积分10
3秒前
自觉语琴完成签到 ,获得积分10
4秒前
国镌胜关注了科研通微信公众号
4秒前
Aimeee完成签到,获得积分10
4秒前
兔子先生完成签到 ,获得积分10
5秒前
美好斓发布了新的文献求助10
6秒前
曹操的曹完成签到,获得积分10
6秒前
菜根谭发布了新的文献求助10
7秒前
7秒前
Smile_Uo发布了新的文献求助10
8秒前
春樹暮雲完成签到 ,获得积分10
10秒前
Jayavi发布了新的文献求助10
11秒前
哆来米完成签到,获得积分10
11秒前
11秒前
liuliu发布了新的文献求助10
11秒前
林勇德完成签到,获得积分10
12秒前
12秒前
考拉完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
重重完成签到 ,获得积分10
14秒前
wangsiyuan完成签到 ,获得积分10
15秒前
彭于晏应助youxin采纳,获得10
16秒前
天天快乐应助庄庄采纳,获得10
16秒前
陈偏偏发布了新的文献求助10
16秒前
科研通AI6应助考拉采纳,获得10
17秒前
xxx发布了新的文献求助10
17秒前
清秀的沉鱼完成签到 ,获得积分10
17秒前
蓝天发布了新的文献求助10
18秒前
18秒前
深情安青应助Smile_Uo采纳,获得10
18秒前
xuxuxuuxuxux完成签到,获得积分10
18秒前
19秒前
塔卫二第一突破手完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603942
求助须知:如何正确求助?哪些是违规求助? 4688789
关于积分的说明 14856201
捐赠科研通 4695596
什么是DOI,文献DOI怎么找? 2541056
邀请新用户注册赠送积分活动 1507200
关于科研通互助平台的介绍 1471832