已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Demand forecasting of shared bicycles based on combined deep learning models

计算机科学 调度(生产过程) 共享单车 人工智能 人工神经网络 预测建模 深度学习 机器学习 运筹学 运输工程 运营管理 工程类 经济
作者
Changxi Ma,Tao Liu
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier]
卷期号:635: 129492-129492 被引量:7
标识
DOI:10.1016/j.physa.2023.129492
摘要

The combined deep learning model for bicycle sharing demand prediction is designed to solve the "last 1 km" problem. At present, there are many companies providing bicycle sharing services at home and abroad, and how to dispatch shared bicycles more efficiently has become an important issue in traffic information research. Sometimes it is difficult to find shared bikes at the exit of some subway stations, along commercial streets, or under some office buildings, while sometimes there are mountains of shared bikes. Therefore, performing demand prediction of shared bikes can efficiently increase the scheduling efficiency of shared bikes, optimize the distribution of shared bikes, and provide more convenient travel services for users. Based on traffic flow prediction theory, this paper studies the spatial and temporal features of shared bicycles. The results show that factors such as time of day, season, weather, and temperature have an effect on the demand for bicycles. Based on the above-mentioned characteristic influencing factors, a CNN-LSTM-Attention algorithm is proposed to forecast the demand for shared bicycles in this paper. Firstly, a CNN-LSTM-Attention model is constructed to predict the demand for bicycle sharing based on the open-source data provided by Capital Bicycle Company. Secondly, it is proved that CNN-LSTM-Attention model is better than 1DCNN-LSTM-Attention, CNN-LSTM, LSTM, SVR-based model and BP neural network model in the precision prediction of shared bicycles, in which the prediction accuracy reaches 97.50%, which confirms the practicality and effectiveness of the model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
肥肠的枣糕啊完成签到,获得积分10
3秒前
小小发布了新的文献求助30
3秒前
4秒前
5秒前
6秒前
fedehe完成签到 ,获得积分10
6秒前
YifanWang应助潇潇雨歇采纳,获得10
8秒前
ZhouLin发布了新的文献求助10
8秒前
双眼皮跳蚤完成签到,获得积分0
11秒前
善学以致用应助Augustines采纳,获得10
18秒前
Mark完成签到 ,获得积分10
18秒前
ZhouLin完成签到,获得积分10
18秒前
hvu完成签到,获得积分10
19秒前
朴素海亦完成签到 ,获得积分10
23秒前
fsznc完成签到 ,获得积分0
24秒前
24秒前
为什么这篇文献又没有完成签到,获得积分10
27秒前
Lucas应助寰2023采纳,获得10
27秒前
william完成签到 ,获得积分10
29秒前
疯狂的娃哈哈完成签到 ,获得积分10
31秒前
儒雅完成签到 ,获得积分10
31秒前
土豪的摩托完成签到 ,获得积分10
33秒前
34秒前
AZN完成签到,获得积分10
34秒前
YifanWang应助潇潇雨歇采纳,获得10
35秒前
科研通AI6应助聪明怜阳采纳,获得10
36秒前
36秒前
辣椒完成签到 ,获得积分10
39秒前
40秒前
刘雨森完成签到 ,获得积分10
42秒前
45秒前
47秒前
Tian完成签到,获得积分10
48秒前
科研小新发布了新的文献求助10
51秒前
小巧亦竹完成签到,获得积分10
52秒前
科研通AI6应助Tian采纳,获得10
52秒前
56秒前
TL完成签到,获得积分10
57秒前
Rina完成签到,获得积分10
57秒前
57秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590251
求助须知:如何正确求助?哪些是违规求助? 4674657
关于积分的说明 14794952
捐赠科研通 4630846
什么是DOI,文献DOI怎么找? 2532648
邀请新用户注册赠送积分活动 1501221
关于科研通互助平台的介绍 1468576