Demand forecasting of shared bicycles based on combined deep learning models

计算机科学 调度(生产过程) 共享单车 人工智能 人工神经网络 预测建模 深度学习 机器学习 运筹学 运输工程 运营管理 工程类 经济
作者
Changxi Ma,Tao Liu
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier BV]
卷期号:635: 129492-129492 被引量:7
标识
DOI:10.1016/j.physa.2023.129492
摘要

The combined deep learning model for bicycle sharing demand prediction is designed to solve the "last 1 km" problem. At present, there are many companies providing bicycle sharing services at home and abroad, and how to dispatch shared bicycles more efficiently has become an important issue in traffic information research. Sometimes it is difficult to find shared bikes at the exit of some subway stations, along commercial streets, or under some office buildings, while sometimes there are mountains of shared bikes. Therefore, performing demand prediction of shared bikes can efficiently increase the scheduling efficiency of shared bikes, optimize the distribution of shared bikes, and provide more convenient travel services for users. Based on traffic flow prediction theory, this paper studies the spatial and temporal features of shared bicycles. The results show that factors such as time of day, season, weather, and temperature have an effect on the demand for bicycles. Based on the above-mentioned characteristic influencing factors, a CNN-LSTM-Attention algorithm is proposed to forecast the demand for shared bicycles in this paper. Firstly, a CNN-LSTM-Attention model is constructed to predict the demand for bicycle sharing based on the open-source data provided by Capital Bicycle Company. Secondly, it is proved that CNN-LSTM-Attention model is better than 1DCNN-LSTM-Attention, CNN-LSTM, LSTM, SVR-based model and BP neural network model in the precision prediction of shared bicycles, in which the prediction accuracy reaches 97.50%, which confirms the practicality and effectiveness of the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
搜集达人应助maq采纳,获得10
2秒前
2秒前
Dahai发布了新的文献求助10
5秒前
zmk发布了新的文献求助10
5秒前
jenny完成签到,获得积分20
6秒前
Rondab应助英勇小蚂蚁采纳,获得30
6秒前
Atlantic完成签到,获得积分10
8秒前
838915882蒽完成签到,获得积分10
9秒前
10秒前
11秒前
佘楽发布了新的文献求助10
12秒前
12秒前
韩凡发布了新的文献求助10
13秒前
冷酷的夜完成签到,获得积分10
13秒前
838915882蒽发布了新的文献求助10
14秒前
zmk完成签到,获得积分10
16秒前
曲蔚然完成签到 ,获得积分10
16秒前
武雨寒完成签到,获得积分20
17秒前
领导范儿应助ZH采纳,获得10
18秒前
19秒前
li完成签到,获得积分10
19秒前
武雨寒发布了新的文献求助10
20秒前
小猪完成签到 ,获得积分10
21秒前
weixiaosi发布了新的文献求助10
22秒前
orixero应助Lice采纳,获得10
23秒前
YingjiaHu完成签到,获得积分10
23秒前
徐徐完成签到,获得积分10
23秒前
24秒前
zhang完成签到,获得积分20
24秒前
星沐影发布了新的文献求助10
25秒前
田様应助小眼儿采纳,获得10
26秒前
lii应助我先睡了采纳,获得10
27秒前
27秒前
zhang发布了新的文献求助10
29秒前
29秒前
大模型应助专一的凛采纳,获得10
30秒前
30秒前
31秒前
aaaaaa发布了新的文献求助10
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966777
求助须知:如何正确求助?哪些是违规求助? 3512284
关于积分的说明 11162496
捐赠科研通 3247199
什么是DOI,文献DOI怎么找? 1793690
邀请新用户注册赠送积分活动 874588
科研通“疑难数据库(出版商)”最低求助积分说明 804432