Demand forecasting of shared bicycles based on combined deep learning models

计算机科学 调度(生产过程) 共享单车 人工智能 人工神经网络 预测建模 深度学习 机器学习 运筹学 运输工程 运营管理 工程类 经济
作者
Changxi Ma,Tao Liu
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier]
卷期号:635: 129492-129492
标识
DOI:10.1016/j.physa.2023.129492
摘要

The combined deep learning model for bicycle sharing demand prediction is designed to solve the "last 1 km" problem. At present, there are many companies providing bicycle sharing services at home and abroad, and how to dispatch shared bicycles more efficiently has become an important issue in traffic information research. Sometimes it is difficult to find shared bikes at the exit of some subway stations, along commercial streets, or under some office buildings, while sometimes there are mountains of shared bikes. Therefore, performing demand prediction of shared bikes can efficiently increase the scheduling efficiency of shared bikes, optimize the distribution of shared bikes, and provide more convenient travel services for users. Based on traffic flow prediction theory, this paper studies the spatial and temporal features of shared bicycles. The results show that factors such as time of day, season, weather, and temperature have an effect on the demand for bicycles. Based on the above-mentioned characteristic influencing factors, a CNN-LSTM-Attention algorithm is proposed to forecast the demand for shared bicycles in this paper. Firstly, a CNN-LSTM-Attention model is constructed to predict the demand for bicycle sharing based on the open-source data provided by Capital Bicycle Company. Secondly, it is proved that CNN-LSTM-Attention model is better than 1DCNN-LSTM-Attention, CNN-LSTM, LSTM, SVR-based model and BP neural network model in the precision prediction of shared bicycles, in which the prediction accuracy reaches 97.50%, which confirms the practicality and effectiveness of the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小朋友完成签到,获得积分10
1秒前
华仔应助小王采纳,获得10
1秒前
彭于晏应助乔乔采纳,获得10
1秒前
1秒前
1199完成签到,获得积分10
1秒前
1秒前
南瓜完成签到 ,获得积分10
2秒前
eric曾完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
韦威风完成签到,获得积分10
5秒前
请叫我风吹麦浪应助cc采纳,获得30
5秒前
所所应助Ll采纳,获得10
5秒前
阳光的道消完成签到,获得积分10
6秒前
6秒前
6秒前
豌豆射手完成签到,获得积分10
7秒前
7秒前
桑桑发布了新的文献求助10
7秒前
领导范儿应助幸福胡萝卜采纳,获得10
8秒前
明理的小甜瓜完成签到,获得积分10
9秒前
9秒前
33333完成签到,获得积分20
9秒前
9秒前
9秒前
756发布了新的文献求助10
9秒前
10秒前
科研通AI5应助GHOST采纳,获得10
10秒前
10秒前
罗实完成签到,获得积分10
11秒前
科研通AI2S应助k7采纳,获得10
11秒前
11秒前
粱自中完成签到,获得积分10
11秒前
luca发布了新的文献求助30
11秒前
11秒前
12秒前
唉呦嘿完成签到,获得积分10
12秒前
dan1029发布了新的文献求助10
13秒前
mc完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762