HomPINNs: Homotopy physics-informed neural networks for solving the inverse problems of nonlinear differential equations with multiple solutions

同伦 同伦分析法 非线性系统 人工神经网络 反问题 独特性 反向 偏微分方程 计算机科学 应用数学 数学 人工智能 数学分析 物理 纯数学 几何学 量子力学
作者
Haoyang Zheng,Yao Huang,Ziyang Huang,Wenrui Hao,Guang Lin
出处
期刊:Journal of Computational Physics [Elsevier BV]
卷期号:500: 112751-112751 被引量:3
标识
DOI:10.1016/j.jcp.2023.112751
摘要

Due to the complex behavior arising from non-uniqueness, symmetry, and bifurcations in the solution space, solving inverse problems of nonlinear differential equations (DEs) with multiple solutions is a challenging task. To address this, we propose homotopy physics-informed neural networks (HomPINNs), a novel framework that leverages homotopy continuation and neural networks (NNs) to solve inverse problems. The proposed framework begins with the use of NNs to simultaneously approximate unlabeled observations across diverse solutions while adhering to DE constraints. Through homotopy continuation, the proposed method solves the inverse problem by tracing the observations and identifying multiple solutions. The experiments involve testing the performance of the proposed method on one-dimensional DEs and applying it to solve a two-dimensional Gray-Scott simulation. Our findings demonstrate that the proposed method is scalable and adaptable, providing an effective solution for solving DEs with multiple solutions and unknown parameters. Moreover, it has significant potential for various applications in scientific computing, such as modeling complex systems and solving inverse problems in physics, chemistry, biology, etc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
丘比特应助寒染雾采纳,获得10
1秒前
Accepted发布了新的文献求助10
1秒前
英俊的铭应助牛马码字员采纳,获得10
1秒前
3秒前
3秒前
许睿完成签到,获得积分10
5秒前
黄大小姐完成签到 ,获得积分10
5秒前
6秒前
7秒前
席江海完成签到,获得积分10
7秒前
8秒前
9秒前
10秒前
11秒前
12秒前
寒染雾发布了新的文献求助10
12秒前
NovaZ完成签到,获得积分10
13秒前
14秒前
打打应助风是淡淡的云采纳,获得10
15秒前
无情平松发布了新的文献求助10
16秒前
17秒前
17秒前
晓畅完成签到,获得积分10
19秒前
20秒前
21秒前
21秒前
张雯思发布了新的文献求助10
26秒前
27秒前
27秒前
沈臻发布了新的文献求助10
27秒前
29秒前
32秒前
Akim应助寒染雾采纳,获得10
33秒前
Ava应助科研通管家采纳,获得10
33秒前
orixero应助科研通管家采纳,获得10
34秒前
汉堡包应助科研通管家采纳,获得10
34秒前
34秒前
Orange应助科研通管家采纳,获得10
34秒前
wdy111应助科研通管家采纳,获得10
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989660
求助须知:如何正确求助?哪些是违规求助? 3531826
关于积分的说明 11255082
捐赠科研通 3270447
什么是DOI,文献DOI怎么找? 1804981
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176