Online transfer learning-based residential demand response potential forecasting for load aggregator

新闻聚合器 需求响应 计算机科学 投标 学习迁移 需求预测 机器学习 运筹学 人工智能 工程类 营销 电气工程 业务 操作系统
作者
Kangping Li,Zhenghui Li,Chunyi Huang,Qian Ai
出处
期刊:Applied Energy [Elsevier]
卷期号:358: 122631-122631 被引量:6
标识
DOI:10.1016/j.apenergy.2024.122631
摘要

Accurate demand response (DR) potential forecasting is the basis for load aggregators (LA) to make optimal bidding strategies in DR market trading. LAs usually face practical challenges when they perform forecasts for those new customers who have no historical response data. Transfer learning provides a promising solution to this problem by leveraging knowledge acquired from other existing contracted customers. However, traditional transfer learning methods are trained offline and cannot make use of the latest response information of these new customers, which may result in large forecasting errors since the response behavior of new customers usually dynamically changes. To address the above issues, this paper proposes an online transfer learning-based DR potential forecasting framework, in which two forecasting models are established. The first one is built using the historical data of existing customers and this model is then transferred to the target domain (i.e., new customers) by parameter sharing and fine-tuning. The second model is built using the local response data of new customers, which gradually accumulates with the increasing participation of DR events. These two models are combined by an adaptive ensemble framework based on their online performances, thus enabling it to dynamically track the changes in new customers' response behavior. Case studies on a real-world dataset validate the effectiveness of the proposed framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cf发布了新的文献求助10
1秒前
江之助完成签到 ,获得积分10
1秒前
Kelly1426发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
猪猪爱吃西红柿完成签到,获得积分10
2秒前
2秒前
斯文败类应助可爱夏岚采纳,获得10
3秒前
缥缈的闭月完成签到,获得积分10
4秒前
蘑菇腿发布了新的文献求助10
4秒前
5秒前
5秒前
tianzml0应助jimlau采纳,获得10
5秒前
KTaoL完成签到,获得积分10
6秒前
JamesPei应助生生采纳,获得10
6秒前
坚定自信发布了新的文献求助10
7秒前
7秒前
科研通AI2S应助我想瘦采纳,获得10
8秒前
江沉晚吟发布了新的文献求助30
8秒前
田様应助昵称采纳,获得10
8秒前
满意的柏柳完成签到 ,获得积分10
10秒前
加油呀发布了新的文献求助50
10秒前
Kristin发布了新的文献求助10
11秒前
梓泽丘墟应助morena采纳,获得10
12秒前
精神小伙完成签到 ,获得积分10
12秒前
13秒前
磬筱完成签到,获得积分10
13秒前
13秒前
14秒前
所所应助梦在彼岸采纳,获得10
14秒前
柠沐之言发布了新的文献求助10
17秒前
123小马发布了新的文献求助10
17秒前
BYN发布了新的文献求助10
18秒前
19秒前
Tammy完成签到,获得积分10
19秒前
皮皮歪完成签到,获得积分10
21秒前
大模型应助谷粱夏山采纳,获得10
21秒前
英姑应助cf采纳,获得10
22秒前
平淡的文龙完成签到,获得积分10
22秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161275
求助须知:如何正确求助?哪些是违规求助? 2812718
关于积分的说明 7896398
捐赠科研通 2471562
什么是DOI,文献DOI怎么找? 1316052
科研通“疑难数据库(出版商)”最低求助积分说明 631098
版权声明 602112