Geometric Correspondence-Based Multimodal Learning for Ophthalmic Image Analysis

人工智能 计算机科学 光学相干层析成像 杠杆(统计) 特征(语言学) 判别式 深度学习 青光眼 模式 模式识别(心理学) 医学影像学 特征选择 图像配准 图像融合 计算机视觉 机器学习 图像(数学) 医学 放射科 眼科 社会科学 语言学 哲学 社会学
作者
Yan Wang,Liangli Zhen,Tien‐En Tan,Huazhu Fu,Yangqin Feng,Zizhou Wang,Xinxing Xu,Rick Siow Mong Goh,Yipin Ng,Claire T. Calhoun,Gavin Siew Wei Tan,Jennifer K. Sun,Yong Liu,Daniel Shu Wei Ting
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (5): 1945-1957 被引量:3
标识
DOI:10.1109/tmi.2024.3352602
摘要

Color fundus photography (CFP) and Optical coherence tomography (OCT) images are two of the most widely used modalities in the clinical diagnosis and management of retinal diseases. Despite the widespread use of multimodal imaging in clinical practice, few methods for automated diagnosis of eye diseases utilize correlated and complementary information from multiple modalities effectively. This paper explores how to leverage the information from CFP and OCT images to improve the automated diagnosis of retinal diseases. We propose a novel multimodal learning method, named geometric correspondence-based multimodal learning network (GeCoM-Net), to achieve the fusion of CFP and OCT images. Specifically, inspired by clinical observations, we consider the geometric correspondence between the OCT slice and the CFP region to learn the correlated features of the two modalities for robust fusion. Furthermore, we design a new feature selection strategy to extract discriminative OCT representations by automatically selecting the important feature maps from OCT slices. Unlike the existing multimodal learning methods, GeCoM-Net is the first method that formulates the geometric relationships between the OCT slice and the corresponding region of the CFP image explicitly for CFP and OCT fusion. Experiments have been conducted on a large-scale private dataset and a publicly available dataset to evaluate the effectiveness of GeCoM-Net for diagnosing diabetic macular edema (DME), impaired visual acuity (VA) and glaucoma. The empirical results show that our method outperforms the current state-of-the-art multimodal learning methods by improving the AUROC score 0.4%, 1.9% and 2.9% for DME, VA and glaucoma detection, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
Emma完成签到,获得积分20
4秒前
圭圭发布了新的文献求助10
6秒前
乐乐应助tcc采纳,获得10
8秒前
路客完成签到,获得积分10
9秒前
tramp应助小晋采纳,获得20
14秒前
gy完成签到 ,获得积分10
14秒前
赘婿应助兔兔不吐泡泡采纳,获得10
16秒前
丁璐完成签到,获得积分10
16秒前
科研通AI2S应助路客采纳,获得10
16秒前
18秒前
酷波er应助lili采纳,获得10
19秒前
英俊的铭应助严小之采纳,获得10
21秒前
sqk完成签到,获得积分10
22秒前
Shiku完成签到,获得积分10
22秒前
MLR完成签到,获得积分20
22秒前
小谢完成签到,获得积分10
22秒前
圈哥完成签到 ,获得积分10
25秒前
25秒前
科研通AI2S应助wicky采纳,获得10
27秒前
莫离关注了科研通微信公众号
28秒前
圭圭完成签到,获得积分10
29秒前
Carol完成签到,获得积分10
30秒前
顺其自然发布了新的文献求助10
31秒前
33秒前
深情安青应助对对对采纳,获得10
34秒前
35秒前
36秒前
36秒前
xiaojcom应助waoller1采纳,获得10
37秒前
37秒前
小白发布了新的文献求助30
41秒前
42秒前
严小之发布了新的文献求助10
42秒前
43秒前
吐司炸弹发布了新的文献求助10
44秒前
joy001发布了新的文献求助10
45秒前
47秒前
lumos发布了新的文献求助10
47秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164337
求助须知:如何正确求助?哪些是违规求助? 2815185
关于积分的说明 7907938
捐赠科研通 2474745
什么是DOI,文献DOI怎么找? 1317642
科研通“疑难数据库(出版商)”最低求助积分说明 631915
版权声明 602234