The N-doped carbon coated Na3V2(PO4)3 with different N sources as cathode material for sodium-ion batteries: Experimental and theoretical study

材料科学 碳纤维 阴极 聚乙烯吡咯烷酮 电化学 电导率 兴奋剂 电极 扩散 钠离子电池 化学工程 复合数 复合材料 物理化学 光电子学 高分子化学 法拉第效率 化学 热力学 物理 工程类
作者
Yuanqiang Zhu,Hui Xu,Ji Ma,Pengdong Chen,Yong Chen
出处
期刊:Surfaces and Interfaces [Elsevier BV]
卷期号:45: 103888-103888 被引量:13
标识
DOI:10.1016/j.surfin.2024.103888
摘要

NASICON (super ion conductor)-type Na3V2(PO4)3 (NVP) is considered to be one of the most promising cathode materials for sodium-ion batteries (SIBs) due to its good structural stability, fast Na+ diffusion coefficient, and excellent electrochemical properties. However, the poor intrinsic conductivity and electronic conductivity and severe volume shrinkage of NVP, resulting in serious limitations in the practical application of NVP materials. Carbon, especially N-doped carbon modification, is the most effective method and strategy to improve the conductivity of NVP. The study of N source and N content in carbon plays a very important role in improving the electronic properties. Herein, N-doped carbon coated NVP composites was synthesized via the classical sol-gel method using common, green and inexpensive urea and polyvinylpyrrolidone (PVP) as N sources, respectively. According to EIS tests and GITT tests, N-doped carbon layers with urea as the N source significantly improved the conductivity of the carbon layers and the Na+ diffusion kinetics. The effects of N-doped carbon layers on the electrode kinetics and electrochemical properties of NVP materials were investigated in detail. The optimized U-NC15@NVP composite exhibited a maximum discharge capacity of 114.2 mAh g−1 at 0.2C and 92.1% capacity retention after 400 cycles at 1C. When the optimal U-NC15@NVP electrode was selected to assemble a symmetric full cell, the reversible discharge capacity was 75.0 mAh g−1 after 100 cycles at 1C. The density functional theory (DFT) calculations establish that N-doped carbon can generate lots of active sites and external defects, which is beneficial to reduce the energy bandwidth of the carbon layer and thus improve the conductivity of the carbon layer. Additionally, it can also reduce the Na+ diffusion barrier and improve the adsorption energy for Na+. Experimental tests and theoretical calculations show that N-doped carbon can significantly increase the conductivity of the carbon layer and improve the electrochemical properties of NVP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张一完成签到,获得积分10
3秒前
windmill完成签到,获得积分10
3秒前
赘婿应助David采纳,获得10
4秒前
CipherSage应助是我呀吼采纳,获得10
4秒前
倪好完成签到,获得积分10
7秒前
谦让汝燕完成签到,获得积分10
7秒前
9秒前
1234@完成签到 ,获得积分10
10秒前
雨相所至完成签到,获得积分10
10秒前
研友_8oYg4n完成签到,获得积分10
10秒前
和光同尘发布了新的文献求助20
10秒前
迷路凌柏完成签到 ,获得积分10
10秒前
11秒前
冬亦发布了新的文献求助10
12秒前
清脆迎曼应助小喜采纳,获得10
12秒前
机智毛豆完成签到,获得积分10
13秒前
13秒前
jzmulyl完成签到,获得积分10
13秒前
薛乎虚完成签到 ,获得积分10
13秒前
gaogao完成签到,获得积分10
14秒前
糖炒栗子完成签到,获得积分10
15秒前
汉堡包应助马前人采纳,获得10
15秒前
m李完成签到 ,获得积分10
15秒前
吴旭东发布了新的文献求助10
16秒前
16秒前
deluohaida完成签到,获得积分20
18秒前
科研小白完成签到,获得积分10
18秒前
18秒前
kyt完成签到 ,获得积分10
19秒前
cij123完成签到,获得积分10
19秒前
冬亦完成签到,获得积分10
20秒前
石人达完成签到,获得积分10
20秒前
小羊佳佳发布了新的文献求助10
21秒前
David发布了新的文献求助10
21秒前
jzmupyj完成签到,获得积分10
21秒前
赵怼怼完成签到,获得积分10
21秒前
22秒前
Weathing完成签到 ,获得积分10
24秒前
七QI完成签到 ,获得积分10
24秒前
吴旭东完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4570728
求助须知:如何正确求助?哪些是违规求助? 3992198
关于积分的说明 12356899
捐赠科研通 3664905
什么是DOI,文献DOI怎么找? 2019801
邀请新用户注册赠送积分活动 1054208
科研通“疑难数据库(出版商)”最低求助积分说明 941798