重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Survey on Foundation Models for Prognostics and Health Management in Industrial Cyber-Physical Systems

预言 风险分析(工程) 信息物理系统 领域(数学) 计算机科学 可靠性(半导体) 系统工程 工程类 过程管理 工程管理 业务 可靠性工程 操作系统 功率(物理) 物理 数学 量子力学 纯数学
作者
Ruonan Liu,Quanhu Zhang,Te Han,Weidong Zhang,Di Lin,C. L. Philip Chen
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2312.06261
摘要

Industrial Cyber-Physical Systems (ICPS) integrate the disciplines of computer science, communication technology, and engineering, and have emerged as integral components of contemporary manufacturing and industries. However, ICPS encounters various challenges in long-term operation, including equipment failures, performance degradation, and security threats. To achieve efficient maintenance and management, prognostics and health management (PHM) finds widespread application in ICPS for critical tasks, including failure prediction, health monitoring, and maintenance decision-making. The emergence of large-scale foundation models (LFMs) like BERT and GPT signifies a significant advancement in AI technology, and ChatGPT stands as a remarkable accomplishment within this research paradigm, harboring potential for General Artificial Intelligence. Considering the ongoing enhancement in data acquisition technology and data processing capability, LFMs are anticipated to assume a crucial role in the PHM domain of ICPS. However, at present, a consensus is lacking regarding the application of LFMs to PHM in ICPS, necessitating systematic reviews and roadmaps to elucidate future directions. To bridge this gap, this paper elucidates the key components and recent advances in the underlying model.A comprehensive examination and comprehension of the latest advances in grand modeling for PHM in ICPS can offer valuable references for decision makers and researchers in the industrial field while facilitating further enhancements in the reliability, availability, and safety of ICPS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1renebaebae完成签到,获得积分20
1秒前
SciGPT应助听风说采纳,获得10
2秒前
xlong发布了新的文献求助10
3秒前
丘比特应助老实的百招采纳,获得10
3秒前
科研通AI6应助doctorkys采纳,获得30
4秒前
Kuuga完成签到,获得积分10
4秒前
4秒前
杨小豆发布了新的文献求助10
4秒前
库凯伊完成签到,获得积分10
4秒前
金桔柠檬完成签到,获得积分10
4秒前
好运6连发布了新的文献求助10
5秒前
烟花应助月亮0927采纳,获得10
5秒前
5秒前
orixero应助梅江采纳,获得10
5秒前
ZZzz发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
lilei发布了新的文献求助10
6秒前
6秒前
典雅问寒完成签到,获得积分0
6秒前
薄荷完成签到,获得积分10
6秒前
6秒前
7秒前
鲜艳的帅哥完成签到,获得积分10
7秒前
8秒前
Owen应助flj采纳,获得10
8秒前
赵楠完成签到,获得积分20
9秒前
9秒前
时尚立轩完成签到,获得积分10
9秒前
10秒前
sunny完成签到 ,获得积分10
11秒前
老仙翁完成签到,获得积分10
11秒前
Zev发布了新的文献求助10
11秒前
12秒前
赵楠发布了新的文献求助10
12秒前
12秒前
13秒前
Owen应助满意怜容采纳,获得10
13秒前
小肥羊完成签到 ,获得积分10
13秒前
苦呀完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466189
求助须知:如何正确求助?哪些是违规求助? 4570151
关于积分的说明 14323225
捐赠科研通 4496641
什么是DOI,文献DOI怎么找? 2463456
邀请新用户注册赠送积分活动 1452353
关于科研通互助平台的介绍 1427516