Failure Probability Prediction for Offshore Floating Structures Using Machine Learning

多项式混沌 维数之咒 替代模型 子空间拓扑 计算机科学 不确定度量化 蒙特卡罗方法 极限(数学) 转化(遗传学) 数学优化 状态空间 解算器 随机变量 算法 数学 人工智能 机器学习 数学分析 生物化学 统计 化学 基因
作者
HyeongUk Lim
出处
期刊:Spe Journal [Society of Petroleum Engineers]
卷期号:29 (03): 1254-1270
标识
DOI:10.2118/218408-pa
摘要

Summary Accurately estimating the failure probability is crucial in designing civil infrastructure systems, such as floating offshore platforms for oil and gas processing/production, to ensure their safe operation throughout their service periods. However, as a system becomes complex, the evaluation of a limit state function may involve the use of an external computer solver, resulting in a significant computational burden to perform Monte Carlo simulations (MCS). Moreover, the high-dimensionality of the limit state function may limit efficient sampling of input variables due to the “curse of dimensionality.” To address these issues, an efficient machine learning framework is proposed, combining polynomial chaos expansion (PCE) and active subspace. This will enable the accurate and efficient evaluation of the failure probability of an offshore structure, which typically involves a large number of uncertain parameters. Unlike conventional PCE schemes that use the original random variable space or the auxiliary variable space for building a surrogate model, the proposed method utilizes a reduced-dimension space to circumvent the “curse of dimensionality.” An appropriate coordinate transformation is first sought so that most of the variability of a limit state function can be accounted for. Next, a PCE surrogate limit state function is constructed on the derived low-dimensional “active subspace.” The Gram-Schmidt orthogonalization process is used for making basis polynomial functions, which is particularly effective when input random parameters do not follow the Askey scheme and/or when a dependence structure between the input parameters exists. Therefore, a nonlinear iso-probabilistic transformation, which makes the convergence of a surrogate to the true model difficult, is not required, unlike traditional PCE. Numerical examples, including limit state functions related to structural dynamics problems, are presented to illustrate the advantages of the proposed method in estimating failure probabilities for complex structural systems. Specifically, the method exhibits significantly improved efficiency in estimating the failure probability of an offshore floating structure without compromising accuracy as compared to traditional PCE and MCS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助高挑的牛青采纳,获得10
刚刚
1秒前
2秒前
2秒前
睡眼阿宁完成签到,获得积分10
2秒前
5秒前
夔kk发布了新的文献求助30
7秒前
比巴卜发布了新的文献求助10
7秒前
灰大壮壮发布了新的文献求助10
8秒前
ZY发布了新的文献求助20
8秒前
时光完成签到,获得积分10
9秒前
9秒前
甜蜜惊蛰完成签到,获得积分10
11秒前
博修发布了新的文献求助10
13秒前
刘先生发布了新的文献求助10
13秒前
14秒前
南琴完成签到,获得积分10
15秒前
18秒前
jgjghjghj发布了新的文献求助10
18秒前
19秒前
搜集达人应助方班术采纳,获得10
19秒前
orixero应助等待的谷波采纳,获得10
21秒前
redking发布了新的文献求助10
21秒前
22秒前
CCY发布了新的文献求助10
23秒前
Woo完成签到 ,获得积分10
25秒前
bemyselfelsa发布了新的文献求助10
27秒前
结实的泥猴桃完成签到 ,获得积分10
28秒前
29秒前
30秒前
orixero应助比巴卜采纳,获得10
30秒前
乐乐应助yydtly采纳,获得10
31秒前
ding应助wjcjk采纳,获得20
32秒前
波因斯坦发布了新的文献求助10
35秒前
36秒前
36秒前
36秒前
hd完成签到,获得积分10
37秒前
42秒前
Andy完成签到 ,获得积分10
42秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967279
求助须知:如何正确求助?哪些是违规求助? 3512575
关于积分的说明 11164253
捐赠科研通 3247522
什么是DOI,文献DOI怎么找? 1793850
邀请新用户注册赠送积分活动 874729
科研通“疑难数据库(出版商)”最低求助积分说明 804495