Failure Probability Prediction for Offshore Floating Structures Using Machine Learning

多项式混沌 维数之咒 替代模型 子空间拓扑 计算机科学 不确定度量化 蒙特卡罗方法 极限(数学) 转化(遗传学) 数学优化 状态空间 解算器 随机变量 算法 数学 人工智能 机器学习 数学分析 生物化学 统计 化学 基因
作者
HyeongUk Lim
出处
期刊:Spe Journal [Society of Petroleum Engineers]
卷期号:29 (03): 1254-1270
标识
DOI:10.2118/218408-pa
摘要

Summary Accurately estimating the failure probability is crucial in designing civil infrastructure systems, such as floating offshore platforms for oil and gas processing/production, to ensure their safe operation throughout their service periods. However, as a system becomes complex, the evaluation of a limit state function may involve the use of an external computer solver, resulting in a significant computational burden to perform Monte Carlo simulations (MCS). Moreover, the high-dimensionality of the limit state function may limit efficient sampling of input variables due to the “curse of dimensionality.” To address these issues, an efficient machine learning framework is proposed, combining polynomial chaos expansion (PCE) and active subspace. This will enable the accurate and efficient evaluation of the failure probability of an offshore structure, which typically involves a large number of uncertain parameters. Unlike conventional PCE schemes that use the original random variable space or the auxiliary variable space for building a surrogate model, the proposed method utilizes a reduced-dimension space to circumvent the “curse of dimensionality.” An appropriate coordinate transformation is first sought so that most of the variability of a limit state function can be accounted for. Next, a PCE surrogate limit state function is constructed on the derived low-dimensional “active subspace.” The Gram-Schmidt orthogonalization process is used for making basis polynomial functions, which is particularly effective when input random parameters do not follow the Askey scheme and/or when a dependence structure between the input parameters exists. Therefore, a nonlinear iso-probabilistic transformation, which makes the convergence of a surrogate to the true model difficult, is not required, unlike traditional PCE. Numerical examples, including limit state functions related to structural dynamics problems, are presented to illustrate the advantages of the proposed method in estimating failure probabilities for complex structural systems. Specifically, the method exhibits significantly improved efficiency in estimating the failure probability of an offshore floating structure without compromising accuracy as compared to traditional PCE and MCS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tuesma完成签到,获得积分10
刚刚
刚刚
烤冷面应助89757采纳,获得10
1秒前
kailash发布了新的文献求助10
2秒前
浮游应助Liaub采纳,获得30
2秒前
fzdzc完成签到 ,获得积分10
3秒前
xiaobai完成签到,获得积分10
3秒前
小丁发布了新的文献求助10
3秒前
XL发布了新的文献求助10
3秒前
香蕉觅云应助Binbin采纳,获得10
3秒前
魔幻安筠发布了新的文献求助10
4秒前
黄少阳完成签到,获得积分10
4秒前
bkagyin应助太阳花采纳,获得10
4秒前
4秒前
三十三完成签到,获得积分10
5秒前
6秒前
6秒前
你们完成签到,获得积分10
6秒前
长小右发布了新的文献求助10
7秒前
ZeKaWa应助刚睡醒采纳,获得10
8秒前
壮观溪流完成签到 ,获得积分10
9秒前
jessicazhong发布了新的文献求助10
10秒前
小丁完成签到,获得积分10
10秒前
跳跃早晨完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
小蘑菇应助2thered采纳,获得10
11秒前
changping应助金jin采纳,获得10
11秒前
xyc完成签到 ,获得积分10
11秒前
脑洞疼应助111采纳,获得10
12秒前
华仔应助急急急_help采纳,获得10
12秒前
自由意志发布了新的文献求助10
13秒前
www完成签到,获得积分10
13秒前
今后应助花痴的如波采纳,获得30
14秒前
14秒前
太阳花发布了新的文献求助10
14秒前
冷漠的黑眼圈完成签到,获得积分10
16秒前
百招完成签到,获得积分10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5083211
求助须知:如何正确求助?哪些是违规求助? 4300362
关于积分的说明 13399065
捐赠科研通 4124471
什么是DOI,文献DOI怎么找? 2258859
邀请新用户注册赠送积分活动 1263116
关于科研通互助平台的介绍 1197164