Failure Probability Prediction for Offshore Floating Structures Using Machine Learning

多项式混沌 维数之咒 替代模型 子空间拓扑 计算机科学 不确定度量化 蒙特卡罗方法 极限(数学) 转化(遗传学) 数学优化 状态空间 解算器 随机变量 算法 数学 人工智能 机器学习 数学分析 生物化学 统计 化学 基因
作者
HyeongUk Lim
出处
期刊:Spe Journal [Society of Petroleum Engineers]
卷期号:29 (03): 1254-1270
标识
DOI:10.2118/218408-pa
摘要

Summary Accurately estimating the failure probability is crucial in designing civil infrastructure systems, such as floating offshore platforms for oil and gas processing/production, to ensure their safe operation throughout their service periods. However, as a system becomes complex, the evaluation of a limit state function may involve the use of an external computer solver, resulting in a significant computational burden to perform Monte Carlo simulations (MCS). Moreover, the high-dimensionality of the limit state function may limit efficient sampling of input variables due to the “curse of dimensionality.” To address these issues, an efficient machine learning framework is proposed, combining polynomial chaos expansion (PCE) and active subspace. This will enable the accurate and efficient evaluation of the failure probability of an offshore structure, which typically involves a large number of uncertain parameters. Unlike conventional PCE schemes that use the original random variable space or the auxiliary variable space for building a surrogate model, the proposed method utilizes a reduced-dimension space to circumvent the “curse of dimensionality.” An appropriate coordinate transformation is first sought so that most of the variability of a limit state function can be accounted for. Next, a PCE surrogate limit state function is constructed on the derived low-dimensional “active subspace.” The Gram-Schmidt orthogonalization process is used for making basis polynomial functions, which is particularly effective when input random parameters do not follow the Askey scheme and/or when a dependence structure between the input parameters exists. Therefore, a nonlinear iso-probabilistic transformation, which makes the convergence of a surrogate to the true model difficult, is not required, unlike traditional PCE. Numerical examples, including limit state functions related to structural dynamics problems, are presented to illustrate the advantages of the proposed method in estimating failure probabilities for complex structural systems. Specifically, the method exhibits significantly improved efficiency in estimating the failure probability of an offshore floating structure without compromising accuracy as compared to traditional PCE and MCS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
杨亚轩发布了新的文献求助10
3秒前
jie完成签到,获得积分20
4秒前
4秒前
闪闪念文完成签到 ,获得积分10
4秒前
5秒前
han发布了新的文献求助10
6秒前
Akim应助肉肉采纳,获得10
7秒前
赘婿应助坚定海之采纳,获得10
8秒前
8秒前
DYZ发布了新的文献求助10
9秒前
9秒前
蓝林完成签到,获得积分20
10秒前
热心凝莲完成签到 ,获得积分10
11秒前
科研通AI6应助han采纳,获得10
11秒前
南非的猫发布了新的文献求助10
11秒前
12秒前
核桃应助典雅的问玉采纳,获得10
13秒前
13秒前
13秒前
长安发布了新的文献求助10
14秒前
Quellaxjy发布了新的文献求助30
14秒前
大模型应助Rili采纳,获得10
14秒前
15秒前
负责长颈鹿完成签到,获得积分20
15秒前
小灰灰完成签到 ,获得积分10
15秒前
幸福的善若完成签到,获得积分10
15秒前
cjz123发布了新的文献求助10
16秒前
科大第一深情完成签到,获得积分10
16秒前
16秒前
怪怪发布了新的文献求助10
18秒前
Cain发布了新的文献求助10
18秒前
xc完成签到,获得积分10
18秒前
19秒前
19秒前
20秒前
Hello应助Wang采纳,获得10
20秒前
20秒前
长安完成签到,获得积分10
21秒前
OhHH发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5393870
求助须知:如何正确求助?哪些是违规求助? 4515281
关于积分的说明 14053296
捐赠科研通 4426429
什么是DOI,文献DOI怎么找? 2431383
邀请新用户注册赠送积分活动 1423533
关于科研通互助平台的介绍 1402529