Failure Probability Prediction for Offshore Floating Structures Using Machine Learning

多项式混沌 维数之咒 替代模型 子空间拓扑 计算机科学 不确定度量化 蒙特卡罗方法 极限(数学) 转化(遗传学) 数学优化 状态空间 解算器 随机变量 算法 数学 人工智能 机器学习 数学分析 生物化学 统计 化学 基因
作者
HyeongUk Lim
出处
期刊:Spe Journal [Society of Petroleum Engineers]
卷期号:29 (03): 1254-1270
标识
DOI:10.2118/218408-pa
摘要

Summary Accurately estimating the failure probability is crucial in designing civil infrastructure systems, such as floating offshore platforms for oil and gas processing/production, to ensure their safe operation throughout their service periods. However, as a system becomes complex, the evaluation of a limit state function may involve the use of an external computer solver, resulting in a significant computational burden to perform Monte Carlo simulations (MCS). Moreover, the high-dimensionality of the limit state function may limit efficient sampling of input variables due to the “curse of dimensionality.” To address these issues, an efficient machine learning framework is proposed, combining polynomial chaos expansion (PCE) and active subspace. This will enable the accurate and efficient evaluation of the failure probability of an offshore structure, which typically involves a large number of uncertain parameters. Unlike conventional PCE schemes that use the original random variable space or the auxiliary variable space for building a surrogate model, the proposed method utilizes a reduced-dimension space to circumvent the “curse of dimensionality.” An appropriate coordinate transformation is first sought so that most of the variability of a limit state function can be accounted for. Next, a PCE surrogate limit state function is constructed on the derived low-dimensional “active subspace.” The Gram-Schmidt orthogonalization process is used for making basis polynomial functions, which is particularly effective when input random parameters do not follow the Askey scheme and/or when a dependence structure between the input parameters exists. Therefore, a nonlinear iso-probabilistic transformation, which makes the convergence of a surrogate to the true model difficult, is not required, unlike traditional PCE. Numerical examples, including limit state functions related to structural dynamics problems, are presented to illustrate the advantages of the proposed method in estimating failure probabilities for complex structural systems. Specifically, the method exhibits significantly improved efficiency in estimating the failure probability of an offshore floating structure without compromising accuracy as compared to traditional PCE and MCS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoyan发布了新的文献求助10
刚刚
1秒前
1秒前
2秒前
2秒前
2秒前
2秒前
lplplp发布了新的文献求助10
3秒前
3秒前
王博士发布了新的文献求助30
4秒前
4秒前
sjsjjj发布了新的文献求助10
4秒前
hhhhhheeeeee发布了新的文献求助20
5秒前
shijin发布了新的文献求助10
5秒前
诚心巧凡完成签到 ,获得积分20
5秒前
淡定美女完成签到 ,获得积分10
6秒前
典雅冰香发布了新的文献求助10
7秒前
LXJY发布了新的文献求助10
8秒前
星辰大海应助何海采纳,获得10
9秒前
8R60d8应助杨洋采纳,获得20
9秒前
9秒前
行歌发布了新的文献求助10
9秒前
wind完成签到,获得积分10
10秒前
liang完成签到,获得积分10
10秒前
记得吃早饭完成签到 ,获得积分10
11秒前
坤坤发布了新的文献求助10
14秒前
wind发布了新的文献求助10
14秒前
15秒前
Azed完成签到,获得积分20
15秒前
16秒前
16秒前
行歌完成签到,获得积分10
17秒前
hhhhhheeeeee完成签到,获得积分10
17秒前
wanci应助yixuan采纳,获得10
19秒前
liang发布了新的文献求助10
19秒前
19秒前
星辰完成签到,获得积分10
19秒前
小盛完成签到 ,获得积分10
20秒前
Gasoline.发布了新的文献求助10
20秒前
科研通AI6应助风中垣采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252271
求助须知:如何正确求助?哪些是违规求助? 4416124
关于积分的说明 13748660
捐赠科研通 4288014
什么是DOI,文献DOI怎么找? 2352722
邀请新用户注册赠送积分活动 1349497
关于科研通互助平台的介绍 1309009