Electrochemical production of hydroxylamine from nitrate on metal electrodes: A comparative study of selectivity and efficiency

羟胺 硝酸盐 选择性 电化学 电极 化学 无机化学 吸附 阴极 有机化学 催化作用 物理化学
作者
Ki-Myeong Lee,Hwajoo Joo,Erwin Jongwoo Park,Joohyun Kim,Yun-Jeong Lee,Jeyong Yoon,Changha Lee
出处
期刊:Chemosphere [Elsevier]
卷期号:353: 141537-141537 被引量:3
标识
DOI:10.1016/j.chemosphere.2024.141537
摘要

Despite the great potential of electrochemical nitrate reduction as a hydroxylamine production method, this strategy has not been sufficiently examined, and the effects of electrode material type on the selectivity and efficiency of this reduction remain underexplored. To bridge this gap, the present study evaluated six metals (Ag, Cu, Ni, Sn, Ti, and Zn) as cathode materials for the electrochemical reduction of nitrate to hydroxylamine, showing that the selectivity of hydroxylamine production was maximal for Sn, while the corresponding faradaic and energy utilization efficiencies were maximal for Ti. Although all tested materials favored nitrate reduction over hydrogen evolution, the disparity in the onset potentials of these reactions did not adequately explain the variations in nitrate removal efficiency, which was found to be influenced by material resistance and charge-transfer properties. The rate constants of elementary nitrate reduction steps determined from the time-dependent concentrations of nitrate and its reduction products (nitrous acid, hydroxylamine, and ammonium) were used to calculate the selectivity and efficiency of hydroxylamine production for each electrode. In turn, these selectivities and efficiencies were correlated with the density functional theory–computed adsorption energies of a key hydroxylamine precursor on different electrodes to afford a volcano-type plot with Ti and Sn at its pinnacle. Thus, this study introduces valuable descriptors and methods for the further screening of electrocatalysts for hydroxylamine generation and the establishment of more environmentally friendly hydroxylamine production techniques utilizing sustainable electricity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
包容友灵完成签到,获得积分10
2秒前
红萌馆管家完成签到,获得积分10
3秒前
科研通AI6.1应助陈龙采纳,获得10
3秒前
4秒前
太阳发布了新的文献求助10
5秒前
彭于晏应助Yidie采纳,获得10
6秒前
6秒前
曾舒欣发布了新的文献求助30
6秒前
7秒前
有个公子她姓李完成签到,获得积分10
7秒前
优秀关注了科研通微信公众号
7秒前
蝈蝈完成签到,获得积分10
7秒前
sqz_df完成签到,获得积分10
8秒前
8秒前
fan完成签到 ,获得积分10
8秒前
微笑襄完成签到 ,获得积分10
8秒前
9秒前
怕孤独的花瓣完成签到,获得积分10
9秒前
关关过应助Sea_U采纳,获得50
9秒前
芳芳子发布了新的文献求助10
10秒前
cheng发布了新的文献求助10
10秒前
数学情缘发布了新的文献求助10
11秒前
七塔蹦完成签到,获得积分10
12秒前
zmr完成签到,获得积分10
12秒前
明亮灭绝发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
LIUDEHUA发布了新的文献求助10
13秒前
慕青应助sqz_df采纳,获得10
14秒前
爱撒娇的大开完成签到 ,获得积分10
14秒前
耍酷橘子完成签到 ,获得积分10
14秒前
陈龙发布了新的文献求助10
15秒前
15秒前
lemon完成签到,获得积分0
16秒前
高高完成签到,获得积分10
16秒前
Owen应助芳芳子采纳,获得10
16秒前
彭于晏应助kongmeng采纳,获得10
16秒前
11完成签到,获得积分10
17秒前
树林发布了新的文献求助10
17秒前
完美世界应助WillGUO采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741647
求助须知:如何正确求助?哪些是违规求助? 5403409
关于积分的说明 15343085
捐赠科研通 4883236
什么是DOI,文献DOI怎么找? 2624979
邀请新用户注册赠送积分活动 1573765
关于科研通互助平台的介绍 1530709