电致发光
光子上转换
材料科学
光电子学
分子
纳米技术
发光
化学
图层(电子)
有机化学
作者
Yang Luo,Fan-Fang Kong,Xiaojun Tian,Yunjie Yu,Shi-Hao Jing,Chao Zhang,Gong Chen,Yang Zhang,Yao Zhang,Xiaoguang Li,Zhenyu Zhang,Zhen‐Chao Dong
标识
DOI:10.1038/s41467-024-45450-5
摘要
Efficient upconversion electroluminescence is highly desirable for a broad range of optoelectronic applications, yet to date, it has been reported only for ensemble systems, while the upconversion electroluminescence efficiency remains very low for single-molecule emitters. Here we report on the observation of anomalously bright single-molecule upconversion electroluminescence, with emission efficiencies improved by more than one order of magnitude over previous studies, and even stronger than normal-bias electroluminescence. Intuitively, the improvement is achieved via engineering the energy-level alignments at the molecule-substrate interface so as to activate an efficient spin-triplet mediated upconversion electroluminescence mechanism that only involves pure carrier injection steps. We further validate the intuitive picture with the construction of delicate electroluminescence diagrams for the excitation of single-molecule electroluminescence, allowing to readily identify the prerequisite conditions for producing efficient upconversion electroluminescence. These findings provide deep insights into the microscopic mechanism of single-molecule upconversion electroluminescence and organic electroluminescence in general.
科研通智能强力驱动
Strongly Powered by AbleSci AI