亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Intelligent identification of tunnel water leakage based on super-resolution reconstruction and triple attention

泄漏(经济) 分割 GSM演进的增强数据速率 人工智能 计算机科学 干扰(通信) 计算机视觉 鉴定(生物学) 编码器 模式识别(心理学) 频道(广播) 电信 植物 生物 经济 宏观经济学 操作系统
作者
Xi Chen,Kun Zhang,Wei Wang,Kun Hu,Yang Xu
出处
期刊:Measurement [Elsevier]
卷期号:225: 114009-114009 被引量:3
标识
DOI:10.1016/j.measurement.2023.114009
摘要

To effectively solve the issues of poor anti-environmental interference and inaccurate defect boundary segmentation in tunnel water leakage intelligent identification methods, an intelligent segmentation method based on super-resolution reconstruction and triple attention is proposed in this paper, named TR-Unet. In TR-Unet, the Real-ERSGAN super-resolution reconstruction algorithm is used to perform resolution enhancement on water leakage images to strengthen the edge details of the defect regions. Then triple attention mechanism is established by fusing channel attention, spatial attention, and self-attention, and is introduced into the encoder of the Unet network, thus enhancing the model's resistance to environmental interference. The results show that the mIoU and mPA of the TR-Unet are 84.31% and 88.95%, respectively, which are higher than the other compared models. In addition, TR-Unet has better segmentation effect of water leakage, which mainly reflected in less false recognition and better edge details.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助小羊同学采纳,获得10
6秒前
和怡完成签到,获得积分10
9秒前
18秒前
23秒前
小羊同学发布了新的文献求助10
23秒前
科研通AI6.1应助和怡采纳,获得10
27秒前
小羊同学完成签到,获得积分10
29秒前
53秒前
FashionBoy应助科研通管家采纳,获得10
54秒前
科研通AI6应助科研通管家采纳,获得10
54秒前
科研通AI6应助科研通管家采纳,获得10
54秒前
科研通AI6应助科研通管家采纳,获得10
54秒前
科研通AI6应助科研通管家采纳,获得10
54秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
和怡发布了新的文献求助10
1分钟前
1分钟前
1分钟前
2分钟前
完美的博发布了新的文献求助10
2分钟前
Ocean发布了新的文献求助10
2分钟前
Ocean完成签到,获得积分10
2分钟前
2分钟前
Owen应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
nicaicai完成签到,获得积分10
3分钟前
3分钟前
TXZ06完成签到,获得积分10
3分钟前
3分钟前
3分钟前
火星上映易完成签到,获得积分10
3分钟前
3分钟前
3分钟前
米奇妙妙屋完成签到,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
Ägyptische Geschichte der 21.–30. Dynastie 1520
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739561
求助须知:如何正确求助?哪些是违规求助? 5387511
关于积分的说明 15339800
捐赠科研通 4882032
什么是DOI,文献DOI怎么找? 2624106
邀请新用户注册赠送积分活动 1572804
关于科研通互助平台的介绍 1529599