An Energy Matching Vessel Segmentation Framework in 3-D Medical Images

分割 计算机科学 人工智能 匹配(统计) 计算机视觉 过程(计算) 像素 光学(聚焦) 图像分割 可扩展性 构造(python库) 模式识别(心理学) 能量(信号处理) 数学 物理 光学 操作系统 统计 程序设计语言 数据库
作者
Pan Liu,Gao Huang,Jing Jing,Suyan Bian,Liuquan Cheng,Xin Lu,Chongyou Rao,Yu Liu,Yun Hua,Yongjun Wang,Kunlun He
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (4): 1476-1488 被引量:2
标识
DOI:10.1109/tmi.2023.3339204
摘要

Accurate vascular segmentation from High Resolution 3-Dimensional (HR3D) medical scans is crucial for clinicians to visualize complex vasculature and diagnose related vascular diseases. However, a reliable and scalable vessel segmentation framework for HR3D scans remains a challenge. In this work, we propose a High-resolution Energy-matching Segmentation (HrEmS) framework that utilizes deep learning to directly process the entire HR3D scan and segment the vasculature to the finest level. The HrEmS framework introduces two novel components. Firstly, it uses the real-order total variation operator to construct a new loss function that guides the segmentation network to obtain the correct topology structure by matching the energy of the predicted segment to the energy of the manual label. This is different from traditional loss functions such as dice loss, which matches the pixels between predicted segment and manual label. Secondly, a curvature-based weight-correction module is developed, which directs the network to focus on crucial and complex structural parts of the vasculature instead of the easy parts. The proposed HrEmS framework was tested on three in-house multi-center datasets and three public datasets, and demonstrated improved results in comparison with the state-of-the-art methods using both topology-relevant and volumetric-relevant metrics. Furthermore, a double-blind assessment by three experienced radiologists on the critical points of the clinical diagnostic processes provided additional evidence of the superiority of the HrEmS framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
WWXWWX应助科研通管家采纳,获得20
刚刚
英俊的铭应助科研通管家采纳,获得10
刚刚
充电宝应助科研通管家采纳,获得30
刚刚
我是老大应助科研通管家采纳,获得30
刚刚
zxh应助科研通管家采纳,获得10
刚刚
Orange应助科研通管家采纳,获得10
刚刚
CipherSage应助科研通管家采纳,获得10
刚刚
宁少爷应助科研通管家采纳,获得30
刚刚
Gakay完成签到,获得积分10
1秒前
时尚的哈密瓜完成签到,获得积分10
1秒前
美满的冬卉完成签到 ,获得积分10
3秒前
快乐滑板应助xu采纳,获得10
3秒前
misstwo完成签到,获得积分10
5秒前
5秒前
南橘完成签到 ,获得积分10
6秒前
格兰德法泽尔完成签到,获得积分10
7秒前
raiychemj完成签到,获得积分10
9秒前
Jj完成签到,获得积分10
10秒前
言庭兰玉完成签到,获得积分10
10秒前
ironsilica完成签到,获得积分10
10秒前
专注的树完成签到,获得积分10
13秒前
14秒前
你好完成签到 ,获得积分10
19秒前
爱76的5完成签到,获得积分10
20秒前
nenoaowu应助lin采纳,获得30
23秒前
Wangyingjie5完成签到 ,获得积分10
25秒前
5433完成签到,获得积分10
28秒前
长乐完成签到,获得积分10
29秒前
研友_VZG7GZ应助AIA7采纳,获得10
29秒前
眼睛大的从雪完成签到,获得积分10
31秒前
今天睡够觉完成签到,获得积分20
31秒前
邱邱完成签到 ,获得积分10
33秒前
务实的绝悟完成签到,获得积分10
34秒前
34秒前
xr完成签到,获得积分10
35秒前
岁月如歌完成签到,获得积分10
37秒前
38秒前
舒适涵山完成签到,获得积分10
39秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139720
求助须知:如何正确求助?哪些是违规求助? 2790623
关于积分的说明 7795870
捐赠科研通 2447082
什么是DOI,文献DOI怎么找? 1301563
科研通“疑难数据库(出版商)”最低求助积分说明 626274
版权声明 601176