Multidimensional Force Sensor Dynamic Compensation Based on Multistrategy Improved Sparrow Search Algorithm

算法 计算机科学 混乱的 人口 校准 控制理论(社会学) 工程类 数学 人工智能 人口学 社会学 统计 控制(管理)
作者
Qi An,Liyue Fu,Haochen Zhang
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:24 (3): 3046-3057 被引量:1
标识
DOI:10.1109/jsen.2023.3334214
摘要

Multi-dimensional force sensors are extensively utilized in industrial milling machining for measuring cutting force and in intelligent robot applications for measuring joint force. These sensors offer several advantages, including improved static characteristics, well-established static calibration techniques, and temperature compensation technology. However, with the increasing demand for measuring dynamic forces in various applications, force sensors need to possess enhanced dynamic characteristics. Unfortunately, strain force sensors typically exhibit low intrinsic frequency and damping ratio, resulting in slower dynamic response of the sensor.To address this issue and enhance the dynamic performance of multidimensional force sensors, this study proposes a dynamic compensation method based on an improved sparrow search algorithm.Chebyshev chaotic mapping was implemented to increase randomness and ergodicity in the initial population. An adaptive weight factor was incorporated to improve the position update formula of finders and the ratio of vigilantes. These changes enhanced the algorithm’s ability to conduct early global searches and late local depth mining. Subsequently, t -distribution changes and Chebyshev chaotic perturbations were introduced to expand the local search capability.The enhanced sparrow search algorithm improves the optimization capabilities of the original algorithm. By utilizing dynamic calibration experimental data from three-dimensional force sensors, the algorithm’s effectiveness was verified. The results indicate that the method successfully reduces the overshooting amount in each channel of the sensors and shortens the regulation time. Consequently, the dynamic performance of the three-dimensional force sensors is improved, and the algorithm proves to be effective, practical, and robust in compensating for the sensors’ dynamic behavior.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香雪若梅发布了新的文献求助10
刚刚
2秒前
2秒前
3秒前
神勇的老五关注了科研通微信公众号
3秒前
打小老虎发布了新的文献求助10
3秒前
4秒前
susu应助务实妖妖采纳,获得20
5秒前
坚定幻嫣发布了新的文献求助10
6秒前
暮鼓完成签到,获得积分20
6秒前
chself完成签到,获得积分20
7秒前
7秒前
Peter发布了新的文献求助10
7秒前
8秒前
薰衣草发布了新的文献求助10
8秒前
zhuming发布了新的文献求助10
8秒前
8秒前
9秒前
10秒前
刻苦寄松发布了新的文献求助10
11秒前
刘shuchang完成签到,获得积分10
12秒前
嘟嘟发布了新的文献求助10
13秒前
随便发布了新的文献求助10
13秒前
14秒前
无私雁菱应助MaZ采纳,获得10
14秒前
zhuming完成签到,获得积分10
14秒前
刘shuchang发布了新的文献求助10
15秒前
在水一方应助缓慢的驳采纳,获得10
16秒前
17秒前
17秒前
18秒前
成就寒安完成签到,获得积分10
18秒前
博雅雅雅雅雅完成签到,获得积分10
19秒前
vetXue完成签到,获得积分10
19秒前
20秒前
luca发布了新的文献求助50
20秒前
非常OK发布了新的文献求助20
21秒前
打小老虎完成签到,获得积分10
22秒前
小慧发布了新的文献求助10
22秒前
胡霖关注了科研通微信公众号
23秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3745110
求助须知:如何正确求助?哪些是违规求助? 3287973
关于积分的说明 10056972
捐赠科研通 3004196
什么是DOI,文献DOI怎么找? 1649567
邀请新用户注册赠送积分活动 785428
科研通“疑难数据库(出版商)”最低求助积分说明 751066