Let model keep evolving: Incremental learning for encrypted traffic classification

计算机科学 钥匙(锁) 机器学习 人工智能 新颖性 数据挖掘 计算机安全 哲学 神学
作者
Xiang Li,Jiang Xie,Qige Song,Yafei Sang,Yongzheng Zhang,Shuhao Li,Tianning Zang
出处
期刊:Computers & Security [Elsevier]
卷期号:137: 103624-103624
标识
DOI:10.1016/j.cose.2023.103624
摘要

Encrypted Traffic Classification (ETC) is valuable for many network management and security solutions as it provides insights into applications active on the network. However, the network environment constantly evolves, and new applications emerge in an endless stream daily, which gradually makes well-trained ETC models ineffective. The conventional approach to adapting new applications is to re-train the models on a re-formed dataset with both pre-existing and new application samples. The major limitation is that requiring redundant computing resources and sufficient storage spaces. In this work, we propose an Incremental Learning (IL) framework based on multi-view sequences fusion, MISS, to keep ETC models evolving with new applications. The key novelty of MISS is three-fold: extract cross-view information from multi-view sequences to capture sufficient knowledge; propose an exemplar selection algorithm from communication patterns to reduce redundant consumption; design a pair of branches from the learnability of parameters to mitigate accuracy loss during evolution. MISS outperforms the existing IL methods of ETC, and the state-of-the-art ETC models using the classic IL framework, on the real-world network traffic datasets, which achieves satisfactory improvements of 11.37%↑ and 1.58%↑. Furthermore, we comprehensively perform incremental experiments to evaluate the evolution ability of MISS, which is able to select representative exemplars of old applications, counteract the adverse effects of homogeneous applications, and keep evolving with unknown applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
2秒前
薄荷小姐完成签到 ,获得积分10
3秒前
3秒前
Cherry完成签到,获得积分20
4秒前
曾经可乐完成签到 ,获得积分10
4秒前
Gstar完成签到,获得积分10
5秒前
monair发布了新的文献求助10
6秒前
安详的未来完成签到 ,获得积分20
6秒前
6秒前
6秒前
不配.应助Xxxxxxx采纳,获得20
6秒前
7秒前
mm发布了新的文献求助10
7秒前
oohQoo完成签到,获得积分10
8秒前
张嘻嘻完成签到,获得积分20
8秒前
欧阳世宏发布了新的文献求助20
9秒前
科研通AI2S应助须臾采纳,获得10
9秒前
10秒前
ding应助zouzou采纳,获得20
10秒前
11秒前
13秒前
bkagyin应助白志文采纳,获得10
14秒前
xzhu完成签到,获得积分10
14秒前
genggeng完成签到,获得积分10
15秒前
苻人英完成签到,获得积分10
16秒前
鸭鸭发布了新的文献求助10
17秒前
冉冉发布了新的文献求助10
18秒前
18秒前
18秒前
雪白砖家发布了新的文献求助10
20秒前
kk发布了新的文献求助10
21秒前
Mry完成签到,获得积分10
22秒前
Sylvia完成签到 ,获得积分10
23秒前
汉堡包应助mhx采纳,获得10
23秒前
23秒前
23秒前
24秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135273
求助须知:如何正确求助?哪些是违规求助? 2786262
关于积分的说明 7776475
捐赠科研通 2442202
什么是DOI,文献DOI怎么找? 1298495
科研通“疑难数据库(出版商)”最低求助积分说明 625112
版权声明 600847