Let model keep evolving: Incremental learning for encrypted traffic classification

计算机科学 钥匙(锁) 机器学习 人工智能 新颖性 数据挖掘 计算机安全 哲学 神学
作者
Xiang Li,Jiang Xie,Qige Song,Yafei Sang,Yongzheng Zhang,Shuhao Li,Tianning Zang
出处
期刊:Computers & Security [Elsevier BV]
卷期号:137: 103624-103624 被引量:7
标识
DOI:10.1016/j.cose.2023.103624
摘要

Encrypted Traffic Classification (ETC) is valuable for many network management and security solutions as it provides insights into applications active on the network. However, the network environment constantly evolves, and new applications emerge in an endless stream daily, which gradually makes well-trained ETC models ineffective. The conventional approach to adapting new applications is to re-train the models on a re-formed dataset with both pre-existing and new application samples. The major limitation is that requiring redundant computing resources and sufficient storage spaces. In this work, we propose an Incremental Learning (IL) framework based on multi-view sequences fusion, MISS, to keep ETC models evolving with new applications. The key novelty of MISS is three-fold: extract cross-view information from multi-view sequences to capture sufficient knowledge; propose an exemplar selection algorithm from communication patterns to reduce redundant consumption; design a pair of branches from the learnability of parameters to mitigate accuracy loss during evolution. MISS outperforms the existing IL methods of ETC, and the state-of-the-art ETC models using the classic IL framework, on the real-world network traffic datasets, which achieves satisfactory improvements of 11.37%↑ and 1.58%↑. Furthermore, we comprehensively perform incremental experiments to evaluate the evolution ability of MISS, which is able to select representative exemplars of old applications, counteract the adverse effects of homogeneous applications, and keep evolving with unknown applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无私鹰发布了新的文献求助10
刚刚
pluto应助cjs采纳,获得10
1秒前
情殇发布了新的文献求助10
1秒前
2秒前
大威天龙发布了新的文献求助10
2秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
YF发布了新的文献求助10
5秒前
5秒前
星星完成签到,获得积分20
5秒前
华仔应助王大可采纳,获得10
5秒前
5秒前
5秒前
NexusExplorer应助枫叶采纳,获得10
6秒前
小刘完成签到 ,获得积分10
6秒前
Jia77完成签到,获得积分10
7秒前
7秒前
8秒前
SYLH应助科研通管家采纳,获得10
8秒前
人生如梦应助科研通管家采纳,获得10
9秒前
SYLH应助科研通管家采纳,获得10
9秒前
xiaoshuai发布了新的文献求助10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
SYLH应助科研通管家采纳,获得10
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
大个应助hui采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得10
10秒前
人生如梦应助科研通管家采纳,获得10
10秒前
Orange应助科研通管家采纳,获得10
10秒前
10秒前
SYLH应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
10秒前
11秒前
12秒前
zzbyxh发布了新的文献求助10
13秒前
黑黑黑发布了新的文献求助10
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974779
求助须知:如何正确求助?哪些是违规求助? 3519193
关于积分的说明 11197417
捐赠科研通 3255311
什么是DOI,文献DOI怎么找? 1797760
邀请新用户注册赠送积分活动 877150
科研通“疑难数据库(出版商)”最低求助积分说明 806187