Uncertainty in the Past and Future Changes of Tropical Pacific SST Zonal Gradient: Internal Variability versus Model Spread

气候学 环境科学 大气环流模式 地质学 气候变化 海洋学
作者
Wang Zheng,Lijun Dong,Fengfei Song,Tianjun Zhou,Xiaolong Chen
出处
期刊:Journal of Climate [American Meteorological Society]
卷期号:37 (4): 1465-1480
标识
DOI:10.1175/jcli-d-23-0237.1
摘要

Abstract The zonal sea surface temperature (SST) gradient across the tropical Pacific is a pacemaker of the variable rates of global warming. In both historical simulations and future projections, the current state-of-the-art climate models show evident spread in the changes of zonal SST gradient, but the reasons remain unknown. Here, we quantify the contributions of internal variability and model spread to the uncertainty of zonal SST gradient changes by analyzing 342 realizations from CMIP5 and CMIP6 models and several sets of large-ensemble simulations. We found that the internal variability dominates the total uncertainty at multidecadal time scales (∼31-yr trends). Although the ratio of internal uncertainty to the total uncertainty declines along with higher emission of greenhouse gases under global warming, it is still over 80% at the multidecadal time scales in the future. The Pacific decadal oscillation is identified as the key internal mode responsible for the multidecadal uncertainty. For the future projections at centurial time scales, the uncertainty of zonal SST gradient changes is mainly from the intermodel spread in response to external forcing, accounting for about 70% of the uncertainty based on the difference between 2070–99 and 1970–99. The model spread in the cloud–shortwave radiation–SST feedback over the tropical Pacific is important in the uncertainty of zonal SST gradient changes. In particular, the intensity of negative convective cloud feedback in the western Pacific dominates the spread in CMIP5 models, while the intensity of stratocumulus cloud feedback over the southeastern Pacific is the primary process influencing the uncertainty in CMIP6 models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助科研通管家采纳,获得10
刚刚
GUGU应助科研通管家采纳,获得10
刚刚
小蘑菇应助科研通管家采纳,获得10
刚刚
刚刚
会工科魔法的社长完成签到,获得积分10
刚刚
FashionBoy应助科研通管家采纳,获得10
刚刚
慕青应助科研通管家采纳,获得10
刚刚
贰鸟应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
模糊中正应助科研通管家采纳,获得30
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得30
1秒前
科目三应助科研通管家采纳,获得10
1秒前
sxm应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
dingm2完成签到 ,获得积分10
2秒前
和我牵手发布了新的文献求助10
2秒前
十九天发布了新的文献求助10
2秒前
read完成签到,获得积分10
2秒前
平常映雁发布了新的文献求助30
3秒前
3秒前
深情安青应助未闻花名采纳,获得10
3秒前
shadow发布了新的文献求助20
5秒前
怕黑的碧蓉关注了科研通微信公众号
5秒前
大力的契完成签到,获得积分10
5秒前
5秒前
richard发布了新的文献求助10
5秒前
科研通AI5应助平安喜楽采纳,获得10
6秒前
xdf发布了新的文献求助10
6秒前
如意的初蓝完成签到 ,获得积分10
6秒前
yyx完成签到,获得积分20
6秒前
7秒前
香蕉觅云应助Mo采纳,获得10
8秒前
小田发布了新的文献求助10
8秒前
邓布利多发布了新的文献求助10
10秒前
CARSI发布了新的文献求助10
10秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3481399
求助须知:如何正确求助?哪些是违规求助? 3071505
关于积分的说明 9122297
捐赠科研通 2763255
什么是DOI,文献DOI怎么找? 1516352
邀请新用户注册赠送积分活动 701541
科研通“疑难数据库(出版商)”最低求助积分说明 700339