控制理论(社会学)
滑模控制
观察员(物理)
计算机科学
控制器(灌溉)
非线性系统
弦(物理)
人工神经网络
理论(学习稳定性)
动态规划
模式(计算机接口)
欺骗
加速度
控制(管理)
数学
人工智能
法学
算法
物理
量子力学
机器学习
经典力学
农学
数学物理
生物
操作系统
政治学
作者
Yangguang Xu,Ge Guo,Shuanghe Yu
摘要
Abstract This article investigates the problem of optimal observer‐based sliding mode control (SMC) of connected vehicles subject to deception attacks and disturbances with adaptive dynamic programming (ADP) method. For a group of vehicles with unknown nonlinear dynamics term and disturbance, this article aims to give a control methodology to achieve secure tracking of the desired spacing, velocity and acceleration. A neural network (NN) and an observer are constructed to estimate the unknown nonlinear term and the states, respectively. Then, a SMC scheme incorporating NN approximation is developed and an off‐policy ADP method is used to implement the optimal control of sliding mode dynamics. The proposed method can ensure individual stability and string stability of the set of vehicles. Numerical simulations are conducted to demonstrate the validity of the proposed controller.
科研通智能强力驱动
Strongly Powered by AbleSci AI