生物
泛素连接酶
青枯菌
青枯病
基因沉默
泛素
植物抗病性
基因
转录因子
细胞生物学
微生物学
遗传学
细菌
作者
Shuangshuang Yan,Yixi Wang,Bingwei Yu,Yuwei Gan,Jianjun Lei,Changming Chen,Zhangsheng Zhu,Zhengkun Qiu,Bihao Cao
摘要
Abstract Bacterial wilt caused by Ralstonia solanacearum is a severe soil-borne disease globally, limiting the production in Solanaceae plants. SmNAC negatively regulated eggplant resistance to Bacterial wilt (BW) though restraining salicylic acid (SA) biosynthesis. However, other mechanisms through which SmNAC regulates BW resistance remain unknown. Here, we identified an interaction factor, SmDDA1b, encoding a substrate receptor for E3 ubiquitin ligase, from the eggplant cDNA library using SmNAC as bait. SmDDA1b expression was promoted by R. solanacearum inoculation and exogenous SA treatment. The virus-induced gene silencing of the SmDDA1b suppressed the BW resistance of eggplants; SmDDA1b overexpression enhanced the BW resistance of tomato plants. SmDDA1b positively regulates BW resistance by inhibiting the spread of R. solanacearum within plants. The SA content and the SA biosynthesis gene ICS1 and signaling pathway genes decreased in the SmDDA1b-silenced plants but increased in SmDDA1b-overexpression plants. Moreover, SmDDB1 protein showed interaction with SmCUL4 and SmDDA1b and protein degradation experiments indicated that SmDDA1b reduced SmNAC protein levels through proteasome degradation. Furthermore, SmNAC could directly bind the SmDDA1b promoter and repress its transcription. Thus, SmDDA1b is a novel regulator functioning in BW resistance of solanaceous crops via the SmNAC-mediated SA pathway. Those results also revealed a negative feedback loop between SmDDA1b and SmNAC controlling BW resistance.
科研通智能强力驱动
Strongly Powered by AbleSci AI