Research on path planning of tea picking robot based on ant colony algorithm

蚁群优化算法 路径(计算) 计算机科学 运动规划 人工智能 蚂蚁 机器人 计算机网络
作者
Minghui Wu,Bo Gao,Heping Hu,Konglin Hong
出处
期刊:Measurement & Control [SAGE]
卷期号:57 (8): 1051-1067 被引量:1
标识
DOI:10.1177/00202940241228996
摘要

Robot tea picking is an inevitable trend to solve the problem of tea picking, and the picking path planning is directly related to the robot picking efficiency. An Improved Ant Colony Algorithm (IACA) is proposed, which firstly introduces the adaptive adjustment mechanism into the pheromone volatilization factor of the ant colony algorithm, and then sets the pheromone volatilization factor with a high initial value to improve the searching speed, and then adjusts the size of its value within a certain range in real time according to the iterative results, and finally solves the problem that the searching of the ant colony algorithm is prone to fall into the local optimal solution. On the basis of visual recognition of tea leaves and obtaining coordinate information, the improved ant colony algorithm is used to enter the path planning simulation experiments, and the planning results of the other six algorithms are compared with the similar algorithms and dissimilar algorithms, and the experimental results indicate that the IACA method has improved the shortest path index by 5% compared to the basic ant colony algorithm, and by an average of 4% compared to similar improved ant colony algorithms. In comparison to different optimization algorithms, the enhancement has an average increase of 6%; Furthermore, the convergence speed has been improved by 60% compared to six other methods. The standard deviation of repeated experimental results is 50% lower than the other six methods. The gap between the results of multiple repeated experiments is small, the degree of fluctuation is low, and the calculation results are more stable, which verifies the superiority of IACA method. Therefore, the improvement of the ant colony algorithm makes the pheromone concentration value with adaptive adjustment ability, which reflects good effects in path optimization, convergence speed improvement, stability of results, etc., and has good application value for the path planning problems such as tea picking, which has complex paths and large computational volume.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xxxlglm发布了新的文献求助10
1秒前
2秒前
3秒前
3秒前
卿筠完成签到,获得积分10
3秒前
深情安青应助美好斓采纳,获得10
3秒前
LZY完成签到,获得积分10
3秒前
4秒前
6秒前
6秒前
7秒前
hanjja发布了新的文献求助10
7秒前
不忘发布了新的文献求助10
8秒前
8秒前
YQT发布了新的文献求助10
11秒前
11秒前
12秒前
DE2022发布了新的文献求助10
13秒前
8D发布了新的文献求助30
13秒前
伏坎完成签到,获得积分10
14秒前
善学以致用应助ZZ采纳,获得10
14秒前
15秒前
Ssu发布了新的文献求助10
15秒前
16秒前
16秒前
YQT完成签到,获得积分10
17秒前
17秒前
大恶魔宝拉完成签到,获得积分10
19秒前
20秒前
麦尔哈巴发布了新的文献求助10
21秒前
呱呱呱发布了新的文献求助10
21秒前
xh完成签到,获得积分10
22秒前
听话的蜡烛完成签到,获得积分10
23秒前
25秒前
赘婿应助谨慎半凡采纳,获得10
25秒前
26秒前
26秒前
27秒前
懵懂的怜翠关注了科研通微信公众号
28秒前
拉长的念双完成签到,获得积分10
29秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491062
求助须知:如何正确求助?哪些是违规求助? 3077779
关于积分的说明 9150152
捐赠科研通 2770160
什么是DOI,文献DOI怎么找? 1520088
邀请新用户注册赠送积分活动 704504
科研通“疑难数据库(出版商)”最低求助积分说明 702196